
Introduction System Design Experiment

GDP: Generalized Device Placement For Dataflow

Graphs

Yanqi Zhou Sudip Roy Admirali Abdolrashidi Daniel Wong
Peter C. Ma Qiumin Xu Ming Zhong Hanxiao Liu

Anna Goldie Azalia Mirhoseini James Laudon

Google Brain

Jan 9, 2020

Introduction System Design Experiment

Introduction

Neural networks have demonstrated remarkable scalability – improved
performance can usually be achieved by training a larger model on a larger
dataset. Training such large models efficiently while meeting device constraints,
like memory limitations, necessitate partitioning of the underlying dataflow
graphs for the models across multiple devices.

Introduction System Design Experiment

Device Placement Using Reinforcement Learning

▶ HDP (Mirhoseini et al., 2018) uses feed forward NN to assign each op to a
group and runs a seq-to-seq model to place each group to a device.

▶ Spotlight (Gao et al., 2018) heuristically groups nodes and generates
placements with LSTM.

▶ Placeto (Addanki et al., 2019) uses GNN to encode the graph structure
into embeddings, then uses feed forward NN to iteratively generate a
placement for one node at each step.

Introduction System Design Experiment

GDP

▶ An end-to-end deep RL method for device placement that can generalize to
arbitrary and held-out graphs.

▶ The placement network is 15x faster than HDP without the need for explicit
grouping.

▶ A new batch pre-training and fine-tuning strategy based on network
superposition, which leads to improved transferability, better placements
especially for large graphs, and huge reduction in policy search time.

▶ Superior performance over a wide set of workloads including graphs with
over 50k nodes.

Introduction System Design Experiment

Problem Formulation

Given a dataflow graph G (V ,E) where V represents atomic computational
operations (ops) and E represents the data dependency. The goal of GDP is to
learn a policy π : G 7→ D that maximizes reward rG ,D defined based on the run
time. GDP represents policy πθ as a nerual network parameterized by θ.

J(θ) = EG∼G,D∼πθ(G)[rG ,D] ≈
1

N

∑

G

ED∼πθ(G)[rG ,D]

We refer to the case when N = 1 as individual training and the case when N > 1
as batch training.

Introduction System Design Experiment

System Overview

Concatenated
Nodes Features

GraphSAGE

Sparse
Representation

Adjacency Matrix

Node Feature:
Ops Type
Output Shape
Input Ops

Aggregator 1
Aggregator 2

Segment 1 Segment 2

Transformer-XL-based
Placer Network

 P

ol
ic

y
O

ut
pu

t

Node Embeddings

Nxd

Nxh

Device Placement
Probabilities

Figure 1: Overview of GDP: An end-to-end placement network that combines graph embedding and
sequential attention. N : Number of Nodes, h: Hidden Size, d: Number of Devices.

2018) introduces SOAP, a more comprehensive search space of parallelization strategies for DNNs
which allows parallelization of a DNN in the Sample, Operator, Attribute, and Parameter dimen-
sions. It uses guided randomized search of the SOAP space to find a parallelization strategy for a
specific parallel machine. GPipe (Huang et al., 2018) proposed pipeline parallelism, by partitioning
a model across different accelerators and automatically splitting a mini-batch of training examples
into smaller micro-batches. By pipelining the execution across micro-batches, accelerators can op-
erate in parallel. Our GDP focuses on a general deep RL method for automating device placement
on arbitrary graphs, and is therefore orthogonal to existing parallelization strategies.

Compiler Optimization REGAL (Paliwal et al., 2019) uses deep RL to optimize the execution
cost of computation graphs in a static compiler. The method leverages the policy’s ability to transfer
to new graphs to improve the quality of the genetic algorithm for the same objective budget. How-
ever, REGAL only targets peak memory minimization while GDP focuses on graph run time and
scalability while also meeting the peak memory constraints of the devices. Specifically, we general-
ize graph partitioning and placement into a single end-to-end problem, with and without simulation,
which can handle graphs with over 50,000 nodes.

3 END-TO-END PLACEMENT POLICY

Given a dataflow graph G(V,E) where V represents atomic computational operations (ops) and E
represents the data dependency, our goal is to learn a policy π : G 7→ D that assigns a placement
D ∈ D for all the ops in the given graph G ∈ G, to maximize the reward rG,D defined based on the
run time. In this work, we represent policy πθ as a neural network parameterized by θ.

Unlike prior works that focus on a single graph only, the RL objective in GDP is defined to simulta-
neously reduce the expected runtime of the placements over a set of N dataflow graphs:

J(θ) = EG∼G,D∼πθ(G)[rG,D] ≈
1

N

∑

G

ED∼πθ(G)[rG,D] (1)

In the following, we refer to the case whenN = 1 as individual training and the case whenN > 1 as
batch training. We optimize the objective above using Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) for improved sample efficiency.

Our proposed policy network πθ consists a graph embedding network that learns the graphical rep-
resentation of any dataflow graph, and a placement network that learns a placement strategy over the
given graph embeddings. The two components are jointly trained in an end-to-end fashion. Note the
architecture is designed to be invariant over the underlying graph topology, enabling us to apply the
same learned policy to a wide set of input graphs with different structures.

Figure 1 shows an overview of the proposed end-to-end device placement network. Next, we will
discuss on each of the components in details.

3

N : Number of nodes, h: Hidden Size, d : Number of Devices

Introduction System Design Experiment

Graph Embedding Network

GDP adopts the feature aggregation scheme proposed in GraphSAGE as it shows
better generalization.

h
(l)
N (v) = max(f (l)a (h(l)u), ∀u ∈ N (v))

h(l+1)
v = f

(l+1)
b (concat(h(l)v , h

(l)
N (v)))

where hv is the hidden feature of v , fa and fb are dense layers, N (v) represents
the neighbors of v , and hN (v) stands for the aggregated feature from the
neighbors of v .

Different from GraphSAGE, which is unsuperised, GDP trains the embeddings
jointly with the placement network.

Introduction System Design Experiment

GraphSAGE

Introduction System Design Experiment

Placement Network

▶ Conventional seq-to-seq models usually target short sequences, which
requires grouping beforehand.

▶ LSTM used in previous works is slower and more difficult to train than
attention-based models.

▶ GDP adopts segment-level recurrence introduced in Transformer-XL to
capture long-term dependencies. The key is to cache (with gradient flows
disabled) and reuse the hidden states of previous segments.

Introduction System Design Experiment

Transformer XL

Segment 1

x1 x2 x4x3

Segment 2

x8x5 x6 x7

(a) Train phase.

Limited Context

x1 x2 x4x3 x5 x6

Limited Context

x2 x3 x5x4 x6x1

Limited Context

x3 x4 x6x5x2x1

(b) Evaluation phase.

Figure 1: Illustration of the vanilla model with a segment length 4.

ageable sizes, and only train the model within
each segment, ignoring all contextual information
from previous segments. This is the idea adopted
by Al-Rfou et al. (2018). We call it the vanilla
model and visualize it in Fig. 1a. Under this
training paradigm, information never flows across
segments in either the forward or backward pass.
There are two critical limitations of using a fixed-
length context. First, the largest possible depen-
dency length is upper bounded by the segment
length, which is a few hundred on character-level
language modeling (Al-Rfou et al., 2018). There-
fore, although the self-attention mechanism is less
affected by the vanishing gradient problem com-
pared to RNNs, the vanilla model is not able to
fully exploit this optimization advantage. Second,
though it is possible to use padding to respect the
sentence or other semantic boundaries, in practice
it has been standard practice to simply chunk long
text into fixed-length segments due to improved
efficiency (Peters et al., 2018; Devlin et al., 2018;
Al-Rfou et al., 2018). However, simply chunking
a sequence into fixed-length segments will lead to
the context fragmentation problem as discussed in
Section 1.

During evaluation, at each step, the vanilla
model also consumes a segment of the same length
as in training, but only makes one prediction at the
last position. Then, at the next step, the segment
is shifted to the right by only one position, and the
new segment has to be processed all from scratch.
As shown in Fig. 1b, this procedure ensures that
each prediction utilizes the longest possible con-
text exposed during training, and also relieves con-
text fragmentation issue encountered in training.
However, this evaluation procedure is extremely
expensive. We will show that our proposed archi-
tecture is able to substantially improve the evalua-
tion speed.

3.2 Segment-Level Recurrence with State
Reuse

To address the limitations of using a fixed-length
context, we propose to introduce a recurrence
mechanism to the Transformer architecture. Dur-
ing training, the hidden state sequence computed
for the previous segment is fixed and cached to
be reused as an extended context when the model
processes the next new segment, as shown in Fig.
2a. Although the gradient still remains within a
segment, this additional input allows the network
to exploit information in the history, leading to an
ability of modeling longer-term dependency and
avoiding context fragmentation. Formally, let the
two consecutive segments of length L be sτ =
[xτ,1, · · · , xτ,L] and sτ+1 = [xτ+1,1, · · · , xτ+1,L]
respectively. Denoting the n-th layer hidden state
sequence produced for the τ -th segment sτ by
hnτ ∈ RL×d, where d is the hidden dimension.
Then, the n-th layer hidden state for segment sτ+1

is produced (schematically) as follows,
h̃n−1
τ+1 =

[
SG(hn−1

τ) ◦ hn−1
τ+1

]
,

qnτ+1,k
n
τ+1,v

n
τ+1 = hn−1

τ+1W
>
q , h̃

n−1
τ+1W

>
k , h̃

n−1
τ+1W

>
v ,

hnτ+1 = Transformer-Layer (qnτ+1,k
n
τ+1,v

n
τ+1) .

where the function SG(·) stands for stop-gradient,
the notation [hu ◦ hv] indicates the concatenation
of two hidden sequences along the length dimen-
sion, and W· denotes model parameters. Com-
pared to the standard Transformer, the critical dif-
ference lies in that the key knτ+1 and value vnτ+1

are conditioned on the extended context h̃n−1τ+1 and
hence hn−1τ cached from the previous segment.
We emphasize this particular design by the green
paths in Fig. 2a.

With this recurrence mechanism applied to ev-
ery two consecutive segments of a corpus, it es-
sentially creates a segment-level recurrence in the
hidden states. As a result, the effective context be-
ing utilized can go way beyond just two segments.
However, notice that the recurrent dependency be-
tween hnτ+1 and hn−1τ shifts one layer downwards

x1 x2 x4x3 x8x5 x6 x7

New Segment

x12x9 x10 x11

Fixed (No Grad)

x1 x2 x4x3 x8x5 x6 x7

Fixed (No Grad) New Segment

(a) Training phase.

x1 x2 x4x3 x8x5 x6 x7 x12x9 x10 x11

Extended Context

(b) Evaluation phase.

Figure 2: Illustration of the Transformer-XL model with a segment length 4.

per-segment, which differs from the same-layer
recurrence in conventional RNN-LMs. Conse-
quently, the largest possible dependency length
grows linearly w.r.t. the number of layers as well
as the segment length, i.e., O(N × L), as vi-
sualized by the shaded area in Fig. 2b. This
is analogous to truncated BPTT (Mikolov et al.,
2010), a technique developed for training RNN-
LMs. However, different from truncated BPTT,
our method caches a sequence of hidden states in-
stead of the last one, and should be applied to-
gether with the relative positional encoding tech-
nique described in Section 3.3.

Besides achieving extra long context and re-
solving fragmentation, another benefit that comes
with the recurrence scheme is significantly faster
evaluation. Specifically, during evaluation, the
representations from the previous segments can
be reused instead of being computed from scratch
as in the case of the vanilla model. In our ex-
periments on enwiki8, Transformer-XL is up to
1,800+ times faster than the vanilla model during
evaluation (see Section 4).

Finally, notice that the recurrence scheme does
not need to be restricted to only the previous seg-
ment. In theory, we can cache as many previous
segments as the GPU memory allows, and reuse
all of them as the extra context when processing
the current segment. Thus, we can cache a prede-
fined length-M old hidden states spanning (pos-
sibly) multiple segments, and refer to them as the
memory mn

τ ∈ RM×d, due to a clear connection to
the memory augmented neural networks (Graves
et al., 2014; Weston et al., 2014). In our experi-
ments, we set M equal to the segment length dur-
ing training, and increase it by multiple times dur-
ing evaluation.

3.3 Relative Positional Encodings

While we found the idea presented in the pre-
vious subsection very appealing, there is a cru-
cial technical challenge we haven’t solved in or-

der to reuse the hidden states. That is, how can
we keep the positional information coherent when
we reuse the states? Recall that, in the standard
Transformer, the information of sequence order is
provided by a set of positional encodings, denoted
as U ∈ RLmax×d, where the i-th row Ui corre-
sponds to the i-th absolute position within a seg-
ment and Lmax prescribes the maximum possible
length to be modeled. Then, the actual input to the
Transformer is the element-wise addition of the
word embeddings and the positional encodings. If
we simply adapt this positional encoding to our
recurrence mechanism, the hidden state sequence
would be computed schematically by

hτ+1 = f(hτ ,Esτ+1 +U1:L)

hτ = f(hτ−1,Esτ +U1:L),

where Esτ ∈ RL×d is the word embedding se-
quence of sτ , and f represents a transformation
function. Notice that, both Esτ and Esτ+1 are as-
sociated with the same positional encoding U1:L.
As a result, the model has no information to dis-
tinguish the positional difference between xτ,j and
xτ+1,j for any j = 1, . . . , L, resulting in a sheer
performance loss.

In order to avoid this failure mode, the funda-
mental idea is to only encode the relative posi-
tional information in the hidden states. Concep-
tually, the positional encoding gives the model a
temporal clue or “bias” about how information
should be gathered, i.e., where to attend. For the
same purpose, instead of incorporating bias stati-
cally into the initial embedding, one can inject the
same information into the attention score of each
layer. More importantly, it is more intuitive and
generalizable to define the temporal bias in a rela-
tive manner. For instance, when a query vector qτ,i
attends on the key vectors kτ,≤i, it does not need
to know the absolute position of each key vector
to identify the temporal order of the segment. In-
stead, it suffices to know the relative distance be-
tween each key vector kτ,j and itself qτ,i, i.e. i−j.
Practically, one can create a set of relative posi-

Introduction System Design Experiment

Batch Training

▶ Naive batch training is challenging because of the divergence of the dataflow
graphs.

▶ GDP uses a feature conditioning mechanism similar to parameter
superposition, implemented by replacing all dense layers in the placement
network with:

x (l+1) = g (l)(c(x (0))⊙ x (l))

where g (l) stands for a dense layer in the placement network, c stands for
the feature conditioning layer, and x (0) denotes the input feature generated by
the graph-embedding network.

Introduction System Design Experiment

Experiment Setup

▶ We compare GDP with human expert placement (HP), Tensorflow METIS
placement (a general purpose graph partitioning tool), and HDP
(Mirhoseini et al., 2018).

▶ 8 Nvidia P100

▶ We use negative square root of the run time as the reward, and subtract the
average reward of all previous trials to calculate the advantage value. Invalid
placements are given a large (-10) negative reward.

Introduction System Design Experiment

Performance on Individual Graphs

Table 1: Run time comparison between GDP-one, human expert, Tensorflow METIS, and hierarchi-
cal device placement (HDP) on six graphs (RNNLM, GNMT, Transformer-XL, Inception, Amoe-
baNet, and WaveNet). Graph runtime speed up is compared with Human Placement (HP) and Hi-
erarchical Device Placement (HDP). Search speed up is the policy network training time speed up
compared to HDP (reported values are averages of six runs).

Model (#devices) GDP-one
(s)

HP
(s)

METIS
(s)

HDP
(s)

Run time
speed up

over HP / HDP

Search
speed up

2-layer RNNLM (2) 0.234 0.257 0.355 0.243 9.8% / 4% 2.95x
4-layer RNNLM (4) 0.409 0.48 OOM 0.490 17.4% / 19.8% 1.76x
2-layer GNMT (2) 0.301 0.384 OOM 0.376 27.6% / 24.9% 30x
4-layer GNMT (4) 0.409 0.469 OOM 0.520 14.7% / 27.1% 58.8x
8-layer GNMT (8) 0.649 0.610 OOM 0.693 -6% / 6.8% 7.35x

2-layer
Transformer-XL (2) 0.386 0.473 OOM 0.435 22.5% / 12.7% 40x

4-layer
Transformer-XL (4) 0.580 0.641 OOM 0.621 11.4% / 7.1% 26.7x

8-layer
Transformer-XL (8) 0.748 0.813 OOM 0.789 8.9% / 5.5% 16.7x

Inception (2) 0.405 0.418 0.423 0.417 3.2% / 3% 13.5x
AmoebaNet (4) 0.394 0.44 0.426 0.418 26.1% / 6.1% 58.8x
2-stack 18-layer

WaveNet (2) 0.317 0.376 OOM 0.354 18.6% / 11.7% 6.67x

4-stack 36-layer
WaveNet (4) 0.659 0.988 OOM 0.721 50% / 9.4% 20x

GEOMEAN - - - - 16% / 9.2% 15x

and scales better to large graphs such as 8-layer NMT and 4-layer RNNLM. Importantly, with the
efficient end-to-end training and sample efficient reinforcement learning algorithm, GDP-one has a
15x speed up in convergence time of the placement network over HDP.

4.3 GENERALIZATION

GDP enables the training of multiple heterogeneous graphs in a single batch, sharing parameters in
the graph-embedding network and the placement network. We name this training strategy GDP-
batch. We empirically show that GDP-batch generates better placements for many workloads such
as transformer-XL (7.6%), WaveNet (15%), and 8-layer GNMT (8%). Table 2 compares the run
time of 11 tasks using GDP-batch, with the same end-to-end architecture as described in section 4.2.
GDP-batch yields slightly better run time compared to GDP-one in majority of the tasks, while being
only slightly worse on AmoebaNet. Compared to training graphs separately, GDP-batch reduces
network parameters and enables transfer learning among different graphs.

We further evaluate the effect of transfer learning by mixing redundant tasks in a batch. We find
that mixing different graphs such as RNNLM and GNMT models with different number of layers
results in both faster and better learning for RNNLM and GNMT with large number of layers (8-
layer). As a matter of fact, both Placeto (Addanki et al., 2019) and HDP had problems matching
human placement performance for 8-layer GNMT or 8-layer RNNLM. With batch training, GDP
is the first device placement work to match human expert performance for both 8-layer GNMT
and 8-layer RNNLM. We also for the first time show that GDP-batch not only improves the
search time (since we do not retrain the policy for every new graph), it can also improve the
performance of the found placements. More detailed results are shown in Appendix Table 3.

Generalization to hold-out graphs: Here we show another set of experiments where we treat GDP-
batch as a pre-training strategy and remove the target graph from the batch training dataset. We then
fine-tune the pre-trained model on the hold-out graphs for fewer than 50 steps, which takes less than
one minute. We name this GDP-generalization+finetune. Figure 2 shows that GDP fine-tuning for
hold-out graphs outperforms human expert placement and HDP consistently on all six batch training
datasets, and performs only slightly worse than GDP-one. 2-layer RNNLM and 2-stack WaveNet
almost match the performance of GDP-one. We also run inference (generate placement) directly on

6

Introduction System Design Experiment

Performance on Batch Training

Run time comparing on GDP-batch vs. GDP-one
Table 2: Run time comparison on GDP-batch vs. GDP-one.

Model Speed up Model Speed up

2-layer RNNLM 0 Inception 0
4-layer RNNLM 5% AmoebaNet -5%
2-layer GNMT 0 4-stack 36-layer WaveNet 3.3 %
4-layer GNMT 0 2-stack 18-layer WaveNet 15%

2-layer Transformer-XL 7.6% 8-layer Transformer-XL 1.5%
4-layer Transformer-XL 3%

the pre-trained model for the target hold-out graphs, and name this GDP-generalization-zeroshot.
We find that GDP-generalization-zeroshot only marginally hurts performance as compared to GDP-
generalization+finetune, while being slightly better than human placement and HDP. This indicates
that both graph embedding and the learned policies transfer and generalize to the unseen data.

2-layer RNNLM 4-layer RNNLM 4-layer GNMT 2-layer TRFXL 4-layer TRFXL 2-stack WaveNet
Unseen Models

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ru
n

tim
e

(s
ec

)

GDP-generalization+finetune
GDP-generalization-zeroshot
HDP
Human expert
Our method individual train

Figure 2: Finetuning on hold-out graphs.

Comparisons with other generalized placement approaches: Placeto (Addanki et al., 2019), to
our knowledge, is the only other method beside GDP that shows true (and non-simulated) gener-
alized device placement results. Direct comparison is not possible since Placeto uses a different
hardware platform and different input graphs (Inception-V3, NMT, and NASNet). Placeto’s search
time is on average 2.65x faster than HDP, while GDP is on average 15x faster than HDP on our
larger set of graphs. Apart from search time speed up, Placeto on average reduces placed graph run
time by 3% (for its different graphs and hardware) while GDP on average reduces placed graph run
time by 9.2%, compared to HDP. One advantage of GDP over Placeto is that it does not rely on any
initial feasible placement. Providing a reasonable initial placement is often non-trivial for domain
experts, especially for larger graphs such as 8-layer GNMT. As such, we are the first to report
superhuman results on 8-layer GNMT.

4.4 ABLATION STUDIES

Attention and Superposition. We did an ablation study on the attention and the superposition
layer in the transformer-XL placer network. We find that attention improves placement run time
by an average of 18% compared to a placer network with no attention, and superposition improves
placement run time by an average of 6.5% where all the graphs are trained in a single batch as
described in Section 4.3. Without superposition network, batch training fails for AmoebaNet and
Inception when mixing with larger RNNLM or GNMT models (4-layer).

Pre-training graph embeddings. We also evaluate a fine-tuning strategy by pre-training the graph
embedding and placement network and fine-tuning the network on the down stream tasks. The
difference here compared to Section 4.3 is that we also include the target graphs in the pre-training
dataset. When GDP-batch is used as a pre-training strategy, the graph embedding and placement

7

A possible explanation for the performance gain is the additional feature
conditioning layer in the batch training effectively enlarged the model.

Introduction System Design Experiment

Performance on Hold-out Graphs
We run GDP on unseen graphs with and without finetuning, called
GDP-gereralization-finetune and GDP-gereralization-zeroshot respectively.

Table 2: Run time comparison on GDP-batch vs. GDP-one.

Model Speed up Model Speed up

2-layer RNNLM 0 Inception 0
4-layer RNNLM 5% AmoebaNet -5%
2-layer GNMT 0 4-stack 36-layer WaveNet 3.3 %
4-layer GNMT 0 2-stack 18-layer WaveNet 15%

2-layer Transformer-XL 7.6% 8-layer Transformer-XL 1.5%
4-layer Transformer-XL 3%

the pre-trained model for the target hold-out graphs, and name this GDP-generalization-zeroshot.
We find that GDP-generalization-zeroshot only marginally hurts performance as compared to GDP-
generalization+finetune, while being slightly better than human placement and HDP. This indicates
that both graph embedding and the learned policies transfer and generalize to the unseen data.

2-layer RNNLM 4-layer RNNLM 4-layer GNMT 2-layer TRFXL 4-layer TRFXL 2-stack WaveNet
Unseen Models

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ru
n

tim
e

(s
ec

)

GDP-generalization+finetune
GDP-generalization-zeroshot
HDP
Human expert
Our method individual train

Figure 2: Finetuning on hold-out graphs.

Comparisons with other generalized placement approaches: Placeto (Addanki et al., 2019), to
our knowledge, is the only other method beside GDP that shows true (and non-simulated) gener-
alized device placement results. Direct comparison is not possible since Placeto uses a different
hardware platform and different input graphs (Inception-V3, NMT, and NASNet). Placeto’s search
time is on average 2.65x faster than HDP, while GDP is on average 15x faster than HDP on our
larger set of graphs. Apart from search time speed up, Placeto on average reduces placed graph run
time by 3% (for its different graphs and hardware) while GDP on average reduces placed graph run
time by 9.2%, compared to HDP. One advantage of GDP over Placeto is that it does not rely on any
initial feasible placement. Providing a reasonable initial placement is often non-trivial for domain
experts, especially for larger graphs such as 8-layer GNMT. As such, we are the first to report
superhuman results on 8-layer GNMT.

4.4 ABLATION STUDIES

Attention and Superposition. We did an ablation study on the attention and the superposition
layer in the transformer-XL placer network. We find that attention improves placement run time
by an average of 18% compared to a placer network with no attention, and superposition improves
placement run time by an average of 6.5% where all the graphs are trained in a single batch as
described in Section 4.3. Without superposition network, batch training fails for AmoebaNet and
Inception when mixing with larger RNNLM or GNMT models (4-layer).

Pre-training graph embeddings. We also evaluate a fine-tuning strategy by pre-training the graph
embedding and placement network and fine-tuning the network on the down stream tasks. The
difference here compared to Section 4.3 is that we also include the target graphs in the pre-training
dataset. When GDP-batch is used as a pre-training strategy, the graph embedding and placement

7

Introduction System Design Experiment

Ablation Studies

We did ablation studies on the attention and the superposition layer in the
placement network. They improved the average run time by 18% and 6.5%
respectively.

Inception
AmoebaNet

2-layer RNNLM
2-layer GNMT

2-layer TrfXL
2-stack WaveNet

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ru
n

Ti
m

e
(s

ec
)

Graphs Run Time Comparision w/o Attention
With Attention
Without Attention

(a) Comparison w/o attention.

Inception
AmoebaNet

2-layer RNNLM
2-layer GNMT

2-layer TrfXL
2-stack WaveNet

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ru
n

Ti
m

e
(s

ec
)

Graphs Run Time Comparision w/o Superposition
With Superposition
Without Superposition

(b) Comparison w/o superposition.

Figure 3: Ablation Study on Attention and Superposition of the Placement Network.

rnnlm 2-layer
rnnlm 4-layer
rnnlm 8-layer

nmt 4-layer
nmt 8-layer
trfxl 4-layer
trfxl 8-layer

inception
amoebanet
wavenet 2-
wavenet 4-

GEOMEAN

0 0.25 0.5 0.75 1 1.25

normalized run time normalized search time

Figure 4: Normalized run time (step time for the generated placement) and normalized training
time (search time) for fine-tuning. Time is normalized to GDP without fine-tuning (training from
scratch).

network assimilate meaningful graph representations and placement policies from a wide set of
graphs, thus can be used as a strong baseline network for fine-tuning on downstream tasks. We
compare the generated placement run time and the placement search time, normalized to GDP-one.
We find that fine-tuning further reduces the the placed graph run time by an average of 5% and
placement search time by an average of 86%, compared to GDP-one.

5 CONCLUSION

In this paper, we present a generalized device placement strategy that uses a graph neural network
and super-positioning to generalize to arbitrary and held out graphs. Through experimental eval-
uation over a wide set of representative graphs from different domains including computer vision,
speech, and NLP, we demonstrated over 15 times faster convergence while achieving a 16% and
9.2% reductions in step time over human expert placement and HDP, respectively.

ACKNOWLEDGMENTS

TBD

8

Introduction System Design Experiment

Pre-training Graph Embeddings
We train GDP-batch like before, but then fine-tuning on each specific graphs.
The run time and search time are reduced by 5% and 86% respectively, compared
with GDP-one.

Inception
AmoebaNet

2-layer RNNLM
2-layer GNMT

2-layer TrfXL
2-stack WaveNet

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ru
n

Ti
m

e
(s

ec
)

Graphs Run Time Comparision w/o Attention
With Attention
Without Attention

(a) Comparison w/o attention.

Inception
AmoebaNet

2-layer RNNLM
2-layer GNMT

2-layer TrfXL
2-stack WaveNet

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ru
n

Ti
m

e
(s

ec
)

Graphs Run Time Comparision w/o Superposition
With Superposition
Without Superposition

(b) Comparison w/o superposition.

Figure 3: Ablation Study on Attention and Superposition of the Placement Network.

rnnlm 2-layer
rnnlm 4-layer
rnnlm 8-layer

nmt 4-layer
nmt 8-layer
trfxl 4-layer
trfxl 8-layer

inception
amoebanet
wavenet 2-
wavenet 4-

GEOMEAN

0 0.25 0.5 0.75 1 1.25

normalized run time normalized search time

Figure 4: Normalized run time (step time for the generated placement) and normalized training
time (search time) for fine-tuning. Time is normalized to GDP without fine-tuning (training from
scratch).

network assimilate meaningful graph representations and placement policies from a wide set of
graphs, thus can be used as a strong baseline network for fine-tuning on downstream tasks. We
compare the generated placement run time and the placement search time, normalized to GDP-one.
We find that fine-tuning further reduces the the placed graph run time by an average of 5% and
placement search time by an average of 86%, compared to GDP-one.

5 CONCLUSION

In this paper, we present a generalized device placement strategy that uses a graph neural network
and super-positioning to generalize to arbitrary and held out graphs. Through experimental eval-
uation over a wide set of representative graphs from different domains including computer vision,
speech, and NLP, we demonstrated over 15 times faster convergence while achieving a 16% and
9.2% reductions in step time over human expert placement and HDP, respectively.

ACKNOWLEDGMENTS

TBD

8

Thank you!

	Introduction
	System Design
	Experiment
	Appendix

