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Introduction

Neural networks have demonstrated remarkable scalability — improved
performance can usually be achieved by training a larger model on a larger
dataset. Training such large models efficiently while meeting device constraints,
like memory limitations, necessitate partitioning of the underlying dataflow
graphs for the models across multiple devices.



Introduction
oeo

Device Placement Using Reinforcement Learning

» HDP (Mirhoseini et al., 2018) uses feed forward NN to assign each op to a
group and runs a seq-to-seq model to place each group to a device.

» Spotlight (Gao et al., 2018) heuristically groups nodes and generates
placements with LSTM.

» Placeto (Addanki et al., 2019) uses GNN to encode the graph structure
into embeddings, then uses feed forward NN to iteratively generate a
placement for one node at each step.
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GDP

An end-to-end deep RL method for device placement that can generalize to
arbitrary and held-out graphs.

The placement network is 15x faster than HDP without the need for explicit
grouping.

A new batch pre-training and fine-tuning strategy based on network
superposition, which leads to improved transferability, better placements
especially for large graphs, and huge reduction in policy search time.

Superior performance over a wide set of workloads including graphs with
over 50k nodes.
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Problem Formulation

Given a dataflow graph G(V/, E) where V represents atomic computational
operations (ops) and E represents the data dependency. The goal of GDP is to
learn a policy 7 : G +— D that maximizes reward r¢ p defined based on the run
time. GDP represents policy my as a nerual network parameterized by 6.

1
J(0) = EGg,Drrmy(6)|r6,0] = N ZEDNw@(G)[rG,D]
G

We refer to the case when N =1 as individual training and the case when N >1
as batch training.



Introduction
000

System Design
0®00000

System Overview
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Graph Embedding Network

GDP adopts the feature aggregation scheme proposed in GraphSAGE as it shows
better generalization.

hy = max(F(h), Yu € N(v))

I+1 (I+1) n p)
AU = £ (concat(h(), )
where h, is the hidden feature of v, f, and f, are dense layers, N'(v) represents
the neighbors of v, and hyr(,) stands for the aggregated feature from the
neighbors of v.

Different from GraphSAGE, which is unsuperised, GDP trains the embeddings
jointly with the placement network.
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GraphSAGE

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information
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Placement Network

» Conventional seq-to-seq models usually target short sequences, which
requires grouping beforehand.

» LSTM used in previous works is slower and more difficult to train than
attention-based models.

» GDP adopts segment-level recurrence introduced in Transformer-XL to
capture long-term dependencies. The key is to cache (with gradient flows
disabled) and reuse the hidden states of previous segments.
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Batch Training

» Naive batch training is challenging because of the divergence of the dataflow
graphs.

» GDP uses a feature conditioning mechanism similar to parameter
superposition, implemented by replacing all dense layers in the placement
network with:

where g(/) stands for a dense layer in the placement network, ¢ stands for
the feature conditioning layer, and x(©) denotes the input feature generated by
the graph-embedding network.
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Experiment Setup

» We compare GDP with human expert placement (HP), Tensorflow METIS

placement (a general purpose graph partitioning tool), and HDP
(Mirhoseini et al., 2018).

» 8 Nvidia P100

» \We use negative square root of the run time as the reward, and subtract the
average reward of all previous trials to calculate the advantage value. Invalid
placements are given a large (-10) negative reward.
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Performance on Individual Graphs

Run time
Model (#devices) GD(P-)one I(dl)) M1(51;IS H(D)P speed up Sea’gch
s S S s over HP/HDP | SPeedup
2-layer RNNLM (2) 0.234 0.257 0.355 0.243 9.8% I 4% 2.95x
4-layer RNNLM (4) 0.409 0.48 OOM 0.490 17.4% 1 19.8% 1.76x
2-layer GNMT (2) 0.301 0.384 OOM 0.376 27.6% 1 24.9% 30x
4-layer GNMT (4) 0.409 0.469 OOM 0.520 14.7% 1 27.1% 58.8x
8-layer GNMT (8) 0.649 0.610 OOM 0.693 -6% 1 6.8% 7.35x
2-layer
Transformer-XL (2) 0.386 0.473 OOM 0.435 22.5% 1 12.7% 40x
4-layer
Transformer-XL (4) 0.580 0.641 OOM 0.621 11.4% /7.1% 26.7x
8-layer
Transformer-XL (8) 0.748 0.813 OOM 0.789 8.9% 1 5.5% 16.7x
Inception (2) 0.405 0418 0.423 0417 3.2% /3% 13.5x
AmoebaNet (4) 0.394 0.44 0.426 0418 26.1% 1 6.1% 58.8x
2-stack 18-layer
WaveNet (2) 0.317 0.376 OOM 0.354 18.6% / 11.7% 6.67x
4-stack 36-layer
WaveNet (4) 0.659 0.988 OOM 0.721 50% / 9.4% 20x
GEOMEAN - - - - 16% /9.2% 15x

Experiment
Oe0000



Introduction System Design Experiment
0000000 O0®000

Performance on Batch Training

Run time comparing on GDP-batch vs. GDP-one

Model | Speedup | Model | Speed up
2-layer RNNLM 0 Inception 0
4-layer RNNLM 5% AmoebaNet -5%

2-layer GNMT 0 4-stack 36-layer WaveNet 33%
4-layer GNMT 0 2-stack 18-layer WaveNet 15%

2-layer Transformer-XL 7.6% 8-layer Transformer-XL 1.5%
4-layer Transformer-XL 3%

A possible explanation for the performance gain is the additional feature
conditioning layer in the batch training effectively enlarged the model.
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Performance on Hold-out Graphs

We run GDP on unseen graphs with and without finetuning, called
GDP-gereralization-finetune and GDP-gereralization-zeroshot respectively.

GDP-generalization+finetune
GDP-generalization-zeroshot
HDP
Human expert
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Ablation Studies

We did ablation studies on the attention and the superposition layer in the
placement network. They improved the average run time by 18% and 6.5%
respectively.
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Pre-training Graph Embeddings

We train GDP-batch like before, but then fine-tuning on each specific graphs.
The run time and search time are reduced by 5% and 86% respectively, compared
with GDP-one.

B normalized run time ™ normalized search time

rnnlm 2-layer
rnnlm 4-layer
rnnlm 8-layer
nmt 4-layer
nmt 8-layer
trfxl 4-layer
trfx] 8-layer
inception
amoebanet
wavenet 2-
wavenet 4-
GEOMEAN
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Thank you!
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