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Introduction

Graphs are a general and flexible data structure to encode complex relationships
among objects. Examples of real-world graphs include social networks, airline
networks, protein-protein interaction networks, and traffic networks. This paper
focuses on two fundamental tasks of graph analysis: community detection and
node representation learning, which capture the global and local structures of
graphs, respectively.



Introduction vGraph Implementation Details
0e00 00000 [e]e]

Motivation

A\\/ ‘\ ®
= M‘a’-“!{ajo

S

(Non)Overlapping Community Detection }

Node Representation Learning
e MF
e LINE
e DeepWalk
e Node2vec

Experiments
00000



Introduction vGraph Implementation Details
[e]e] e} 00000 [e]e]

Motivation

((Overlapping) Community Detection

Community Preserving

Network Embedding Clustering (i.e. K-Means)

Using Node Embeddings
as feature

Node Representation Learning
e MF
e LINE
e DeepWalk
o Node2vec

Experiments
00000



Introduction vGraph Implementation Details
ocooe 00000 [e}e}

vGraph - probabilistic generative model

» Generative model with Variational Inference to solve community detection
and node representation learning jointly.

» Scalable: O(d  |E| x K).
® d: embedding dimension
® |E|: number of edges in the graph
® K: number of communities
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Problem Definition

Given a graph G(V, E) where V" and F represent the set of vertices and edges
respectively, we aim to jointly learn a node embedding ¢; € R? and community
affiliation F(v;) C {1,..., K'} for each vertex v;.
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Model

vGraph assumes that the edges (w, ¢) is generated from the following stocastic
process: for node w, we first draw a community assignment z ~ p(z|w)

representing the social context of w during the generation process. Then, the

linked neighbor ¢ is generated based on the assignment z through ¢ ~ p(c|z).
Formally, this process can be fomulated as:

p(clw) = Zp clz)p



vGraph
00e00

Model
p(clw) = Zp clz)p

vGraph parameterizes the distributions p(z|w) and p(c|z) by introducing three
sets of embeddings: ¢;, @;, and ;. The prior distribution py(2|w) and the

node distribution conditioned on a community py, ,(c|z) are parameterized by
two softmax models:

Pas(z = i) = Py
| it exp(df)
(e

Puglclz = 1) =

Zc/eN eXp(ll)?(Pc/)
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Variational Inference

The goal is to maximize the log-likelihood of the observed edges

> logpg.gu(clw)

(c,w)EE

Directly optimizing this objective is intractable for large graphs, we instead
optimize the following evidence lower bound

L= Eanqtelem) (108 Py o(c]2)) = K L(q(z]e, w) ey (2|w))

where ¢(z|c, w) is a variational distribution that approximates the true posterior
distribution p(z|c,w), and K L(-||-) represents the Kullback-Leibler divergence
between two distributions.
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Variational Inference

L= Ezwq(z\c,w) (logpll),(l)(clz)) - KL(Q(Z’67 w)||p¢’¢(z|w))

o exp(dlby)
Poalz = I = S )
Puolelz = 1) = 2l 0
e ZC/EN eXp(ll),f(pc/)

Specifically, we parameterize the variational distribution using a neural network as
follows (® denotes element-wise multiplication):

eXp((d)w ® (bc)Tll)j)
S exp((bw © be)TW;)

Gop(2 = jle,w) =
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It refactors the sampling operation into a deterministic function.
z = argmax{G; + log(m;)}
i

where G; ~ Gumbel(0,1). To pass gradients back, Straight-through estimator is
used, which is basically using softmax to approximate the argmax operation
during back propagation.
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Community—smoothness Regularization

vGraph add the following regularization term to ensure that connected nodes
tend to be in the same community:

reg =A Z awc' C),p(leU))

(w,c)eE

where A is a tunable hyperparameter, d(-,-) is the distance measure (squared
difference in the experiment). «, . is given by:

L _IN@) NN
"¢ = [N(w) UN(e)

where N (w) is the set of neighbors of w. The intuition behind this is that oy, .
serves as a similarity measure and the Jaccard's coefficient is used for this metric.
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Experiment Setup

» 20 standard graph datasets.

» 3 tasks: overlaping community detection, non-overlaping community
detection, and vertex classification.

Experiments
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Overlapping community detection

Table 2: Evaluation (in terms of F1-Score and Jaccard Similarity) on networks with overlapping ground-truth communi-
ties. NA means the task is not completed in 24 hours. In order to evaluate the effectiveness of smoothness regularization,

we show the result of our model with (vGraph+) and without the regularization.
Fl-score Jaccard

Dataset Bigclam | CESNA | Circles SVI vGraph | vGraph+ || Bigclam | CESNA | Circles SVI vGraph | vGraph+
facebook0 0.2948 | 0.2806 | 0.2860 | 0.2810 | 0.2440 | 0.2606 0.1846 | 0.1725 | 0.1862 | 0.1760 | 0.1458 | 0.1594
facebook107 | 0.3928 | 0.3733 | 0.2467 | 0.2689 | 0.2817 | 0.3178 0.2752 | 0.2695 | 0.1547 | 0.1719 | 0.1827 | 0.2170
facebook1684 | 0.5041 0.5121 | 0.2894 | 0.3591 | 0.4232 0.4379 0.3801 0.3871 | 0.1871 | 0.2467 | 0.2917 0.3272
facebook1912 | 0.3493 0.3474 | 0.2617 | 0.2804 | 0.2579 0.3750 0.2412 0.2394 | 0.1672 | 0.2010 | 0.1855 0.2796
facebook3437 | 0.1986 | 0.2009 | 0.1009 | 0.1544 | 0.2087 | 0.2267 0.1148 | 0.1165 | 0.0545 | 0.0902 | 0.1201 | 0.1328
facebook348 | 0.4964 | 0.5375 | 0.5175 | 0.4607 | 0.5539 | 0.5314 0.3586 | 0.4001 | 0.3927 | 0.3360 | 0.4099 | 0.4050
facebook3980 | 0.3274 0.3574 | 0.3203 NA 0.4450 0.4150 0.2426 0.2645 | 0.2097 NA 0.3376 0.2933
facebook414 | 0.5886 | 0.6007 | 0.4843 | 0.3893 | 0.6471 | 0.6693 04713 | 04732 | 03418 | 0.2931 | 0.5184 | 0.5587
facebook686 | 0.3825 | 0.3900 | 0.5036 | 0.4639 | 0.4775 | 0.5379 0.2504 | 0.2534 | 0.3615 | 0.3394 | 0.3272 | 0.3856
facebook698 | 0.5423 | 0.5865 | 0.3515 | 0.4031 | 0.5396 | 0.5950 04192 | 04588 | 0.2255 | 0.3002 | 0.4356 | 0.4771

Youtube 0.4370 | 0.3840 | 0.3600 | 0.4140 | 0.5070 | 0.5220 0.2929 | 0.2416 | 0.2207 | 0.2867 | 0.3434 | 0.3480
Amazon 0.4640 | 0.4680 | 0.5330 | 0.4730 | 0.5330 | 0.5320 0.3505 | 0.3502 | 0.3671 | 0.3643 | 0.3689 | 0.3693
Dblp 0.2360 | 0.3590 NA NA 0.3930 | 0.3990 0.1384 | 0.2226 NA NA 0.2501 0.2505

Coauthor-CS | 0.3830 | 0.4200 NA 0.4070 | 0.4980 | 0.5020 0.2409 0.2682 NA 0.2972 | 0.3517 | 0.3432
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Non-overlapping community detection

Table 3: Evaluation (in terms of NMI and Modularity) on networks with non-overlapping ground-truth communities.
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NMI Modularity

Dataset MF [ deepwalk | LINE [ node2vec | ComE | vGraph MF deepwalk | LINE [ node2vec | ComE | vGraph
cornell 0.0632 [ 0.0789 | 0.0697 | 0.0712 | 0.0732 | 0.0803 || 0.4220 | 0.4055 | 0.2372 | 0.4573 | 0.5748 | 0.5792
texas 0.0562 | 0.0684 | 0.1289 | 0.0655 | 0.0772 | 0.0809 || 0.2835 | 0.3443 | 0.1921 | 0.3926 | 0.4856 | 0.4636
washington | 0.0599 0.0752 0.0910 0.0538 0.0504 | 0.0649 || 0.3679 0.1841 0.1655 0.4311 0.4862 | 0.5169
wisconsin | 0.0530 | 0.0759 | 0.0680 | 0.0749 | 0.0689 | 0.0852 | 0.3892 | 0.3384 | 0.1651 | 0.5338 | 0.5500 | 0.5706
cora 0.2673 | 0.3387 | 0.2202 | 0.3157 | 0.3660 | 0.3445 || 0.6711 | 0.6398 | 0.4832 | 0.5392 | 0.7010 | 0.7358
citeseer 0.0552 0.1190 0.0340 0.1592 0.2499 | 0.1030 || 0.6963 0.6819 0.4014 0.4657 0.7324 | 0.7711
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Vertex classification

Table 4: Results of node classification on 6 datasets.
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Macro-F1 Micro-F1

Datasets MF | DeepWalk | LINE | Node2Vec | ComE | vGraph MF | DeepWalk | LINE | Node2Vec | ComE | vGraph
Cornell 13.05 22.69 21.78 20.70 19.86 | 29.76 1525 33.05 2373 2458 2542 [ 3729
Texas 8.74 21.32 16.33 14.95 1546 | 26.00 14.03 40.35 27.19 25.44 33.33 | 47.37
Washington | 15.88 18.45 13.99 21.23 15.80 | 30.36 15.94 34.06 25.36 28.99 3333 | 34.78
Wisconsin | 14.77 23.44 19.06 18.47 14.63 | 2991 18.75 38.75 28.12 25.00 3250 | 35.00
Cora 11.29 13.21 11.86 10.52 12.88 | 16.23 12.79 2232 14.59 27.74 28.04 | 2435
Citeseer 14.59 16.17 15.99 16.68 12.88 | 17.88 15.79 19.01 16.80 20.82 19.42 | 2042

Experiments
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Visualization

(a) (b)

Figure 2: In panel (a) we visualize the result on the facebook107 dataset using vGraph. In panel (b) we visualize
the result on Dblp-full dataset using vGraph. The coordinates of the nodes are determined by t-SNE of the node
embeddings.



Conclusion

This paper presented a probabilistic method for jointly solving community
detection and node representation learning. Experiments show that it performs
well for both tasks.
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