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Introduction

Graphs are a general and flexible data structure to encode complex relationships
among objects. Examples of real-world graphs include social networks, airline
networks, protein-protein interaction networks, and traffic networks. This paper
focuses on two fundamental tasks of graph analysis: community detection and
node representation learning, which capture the global and local structures of
graphs, respectively.
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vGraph - probabilistic generative model

▶ Generative model with Variational Inference to solve community detection
and node representation learning jointly.

▶ Scalable: O(d ∗ |E| ∗K).
• d: embedding dimension
• |E|: number of edges in the graph
• K: number of communities
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Problem Definition

Given a graph G(V,E) where V and E represent the set of vertices and edges
respectively, we aim to jointly learn a node embedding ϕi ∈ Rd and community
affiliation F(νi) ⊆ {1, ..., K} for each vertex νi.
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Model

vGraph assumes that the edges (w, c) is generated from the following stocastic
process: for node w, we first draw a community assignment z ∼ p(z|w)
representing the social context of w during the generation process. Then, the
linked neighbor c is generated based on the assignment z through c ∼ p(c|z).
Formally, this process can be fomulated as:

p(c|w) =
∑
z

p(c|z)p(z|w)
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Model

p(c|w) =
∑
z

p(c|z)p(z|w)

vGraph parameterizes the distributions p(z|w) and p(c|z) by introducing three
sets of embeddings: ϕi, φi, and ψj. The prior distribution pϕ,ψ(z|w) and the
node distribution conditioned on a community pψ,φ(c|z) are parameterized by
two softmax models:

pϕ,ψ(z = j|w) = exp(ϕT
wψj)∑K

i=1 exp(ϕ
T
wψi)

pψ,φ(c|z = j) =
exp(ψT

j φc)∑
c′∈N exp(ψT

j φc′)
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Variational Inference

The goal is to maximize the log-likelihood of the observed edges∑
(c,w)∈E

log pϕ,φ,ψ(c|w)

Directly optimizing this objective is intractable for large graphs, we instead
optimize the following evidence lower bound

L = Ez∼q(z|c,w)(log pψ,φ(c|z))−KL(q(z|c, w)∥pϕ,ψ(z|w))
where q(z|c, w) is a variational distribution that approximates the true posterior
distribution p(z|c, w), and KL(·∥·) represents the Kullback-Leibler divergence
between two distributions.
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Variational Inference

L = Ez∼q(z|c,w)(log pψ,φ(c|z))−KL(q(z|c, w)∥pϕ,ψ(z|w))

pϕ,ψ(z = j|w) = exp(ϕT
wψj)∑K

i=1 exp(ϕ
T
wψi)

pψ,φ(c|z = j) =
exp(ψT

j φc)∑
c′∈N exp(ψT

j φc′)

Specifically, we parameterize the variational distribution using a neural network as
follows (⊙ denotes element-wise multiplication):

qϕ,ψ(z = j|c, w) = exp((ϕw ⊙ ϕc)
Tψj)∑K

i=1 exp((ϕw ⊙ ϕc)Tψi)
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Straight-through Gumbel-Softmax estimator

It refactors the sampling operation into a deterministic function.

z = argmax
i

{Gi + log(πi)}

where Gi ∼ Gumbel(0, 1). To pass gradients back, Straight-through estimator is
used, which is basically using softmax to approximate the argmax operation
during back propagation.
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Community-smoothness Regularization

vGraph add the following regularization term to ensure that connected nodes
tend to be in the same community:

Lreg = λ
∑

(w,c)∈E

αw,c · d(p(z|c), p(z|w))

where λ is a tunable hyperparameter, d(·, ·) is the distance measure (squared
difference in the experiment). αw,c is given by:

αw,c =
|N(w) ∩N(c)|
|N(w) ∪N(c)|

where N(w) is the set of neighbors of w. The intuition behind this is that αw,c

serves as a similarity measure and the Jaccard’s coefficient is used for this metric.
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Experiment Setup

▶ 20 standard graph datasets.

▶ 3 tasks: overlaping community detection, non-overlaping community
detection, and vertex classification.
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Overlapping community detection
vGraph: A Generative Model for Joint Community Detection and Node Representation Learning

Table 2: Evaluation (in terms of F1-Score and Jaccard Similarity) on networks with overlapping ground-truth communi-
ties. NA means the task is not completed in 24 hours. In order to evaluate the effectiveness of smoothness regularization,
we show the result of our model with (vGraph+) and without the regularization.

F1-score Jaccard
Dataset Bigclam CESNA Circles SVI vGraph vGraph+ Bigclam CESNA Circles SVI vGraph vGraph+

facebook0 0.2948 0.2806 0.2860 0.2810 0.2440 0.2606 0.1846 0.1725 0.1862 0.1760 0.1458 0.1594
facebook107 0.3928 0.3733 0.2467 0.2689 0.2817 0.3178 0.2752 0.2695 0.1547 0.1719 0.1827 0.2170
facebook1684 0.5041 0.5121 0.2894 0.3591 0.4232 0.4379 0.3801 0.3871 0.1871 0.2467 0.2917 0.3272
facebook1912 0.3493 0.3474 0.2617 0.2804 0.2579 0.3750 0.2412 0.2394 0.1672 0.2010 0.1855 0.2796
facebook3437 0.1986 0.2009 0.1009 0.1544 0.2087 0.2267 0.1148 0.1165 0.0545 0.0902 0.1201 0.1328
facebook348 0.4964 0.5375 0.5175 0.4607 0.5539 0.5314 0.3586 0.4001 0.3927 0.3360 0.4099 0.4050
facebook3980 0.3274 0.3574 0.3203 NA 0.4450 0.4150 0.2426 0.2645 0.2097 NA 0.3376 0.2933
facebook414 0.5886 0.6007 0.4843 0.3893 0.6471 0.6693 0.4713 0.4732 0.3418 0.2931 0.5184 0.5587
facebook686 0.3825 0.3900 0.5036 0.4639 0.4775 0.5379 0.2504 0.2534 0.3615 0.3394 0.3272 0.3856
facebook698 0.5423 0.5865 0.3515 0.4031 0.5396 0.5950 0.4192 0.4588 0.2255 0.3002 0.4356 0.4771

Youtube 0.4370 0.3840 0.3600 0.4140 0.5070 0.5220 0.2929 0.2416 0.2207 0.2867 0.3434 0.3480
Amazon 0.4640 0.4680 0.5330 0.4730 0.5330 0.5320 0.3505 0.3502 0.3671 0.3643 0.3689 0.3693

Dblp 0.2360 0.3590 NA NA 0.3930 0.3990 0.1384 0.2226 NA NA 0.2501 0.2505
Coauthor-CS 0.3830 0.4200 NA 0.4070 0.4980 0.5020 0.2409 0.2682 NA 0.2972 0.3517 0.3432

Table 1: Dataset Statistics. |V |: number of
nodes, |E |: number of edges, K: number of
communities, AS: average size of communities,
AN: average number of communities that a node
belongs to.

Dataset |V | |E | K AS AN
Nonoverlapping
Cornell 195 286 5 39.00 1
Texas 187 298 5 37.40 1
Washington 230 417 5 46.00 1
Wisconsin 265 479 5 53.00 1
Cora 2708 5278 7 386.86 1
Citeseer 3312 4660 6 552.00 1
overlapping
facebook0 333 2519 24 13.54 0.98
facebook107 1034 26749 9 55.67 0.48
facebook1684 786 14024 17 45.71 0.99
facebook1912 747 30025 46 23.15 1.43
facebook3437 534 4813 32 6.00 0.36
facebook348 224 3192 14 40.50 2.53
facebook3980 52 146 17 3.41 1.12
facebook414 150 1693 7 25.43 1.19
facebook686 168 1656 14 34.64 2.89
facebook698 61 270 13 6.54 1.39
Youtube 5346 24121 5 1347.80 1.26
Amazon 794 2109 5 277.20 1.75
Dblp 24493 89063 5 5161.40 1.05
Coauthor-CS 9252 33261 5 2920.60 1.58
Dblp-full 93432 335520 5000 22.45 1.20

For overlapping community detection, we use F1-Score and Jaccard
Similarity to measure the performance of the detected communities as
in [37, 18]. For non-overlapping community detection, we use Nor-
malized Mutual Information (NMI) [28] and Modularity. Note that
Modularity does not utilize ground truth data. For node classification,
Micro-F1 and Macro-F1 are used.

5.3 Comparative Methods

For overlapping community detection, we choose four competitive
baselines: BigCLAM [36], a nonnegative matrix factorization ap-
proach based on the Bernoulli-Poisson link that only considers the
graph structure; CESNA [37], an extension of BigCLAM, that ad-
ditionally models the generative process for node attributes; Circles
[20], a generative model of edges w.r.t. attribute similarity to de-
tect communities; and SVI [10], a Bayesian model for graphs with
overlapping communities that uses a mixed-membership stochastic
blockmodel.

To evaluate node embedding and non-overlapping community detec-
tion, we compare our method with the five baselines: MF [32], which represents each vertex with a low-dimensional
vector obtained through factoring the adjacency matrix; DeepWalk [24], a method that adopts truncated random
walk and Skip-Gram to learn vertex embeddings; LINE [26], which aims to preserve the first-order and second-order
proximity among vertices in the graph; Node2vec [11], which adopts biased random walk and Skip-Gram to learn
vertex embeddings; and ComE [4], which uses a Gaussian mixture model to learn an embedding and clustering jointly
using random walk features.

5.4 Experiment Configuration

For all baseline methods, we use the implementations provided by their authors and use the default parameters.
For methods that only output representations of vertices, we apply K-means to the learned embeddings to get non-
overlapping communities. Results report are averaged over 5 runs. No node attributes are used in all our experiments.
We generate node attributes using node degree features for those methods that require node attributes such as CESNA
[37] and Circles [20]. It is hard to compare the quality of community results when the numbers of communities are
different for different methods. Therefore, we set the number of communities to be detected, K, as the number of
ground-truth communities for all methods, as in [18]. For vGraph, we use full-batch training when the dataset is small
enough. Otherwise, we use stochastic training with a batch size of 5000 or 10000 edges. The initial learning rate is set
to 0.05 and is decayed by 0.99 after every 100 iterations. We use the Adam optimizer and we trained for 5000 iterations.
When smoothness regularization is used, λ is set to 100. For community detection, the model with the lowest loss is
chosen. For node classification, we evaluate node embeddings after 1000 iterations of training. The dimension of node
embeddings is set to 128 in all experiments for all methods. For the node classification task, we randomly select 70% of
the labels for training and use the rest for testing.

6
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Non-overlapping community detection

vGraph: A Generative Model for Joint Community Detection and Node Representation Learning

Table 3: Evaluation (in terms of NMI and Modularity) on networks with non-overlapping ground-truth communities.
NMI Modularity

Dataset MF deepwalk LINE node2vec ComE vGraph MF deepwalk LINE node2vec ComE vGraph
cornell 0.0632 0.0789 0.0697 0.0712 0.0732 0.0803 0.4220 0.4055 0.2372 0.4573 0.5748 0.5792
texas 0.0562 0.0684 0.1289 0.0655 0.0772 0.0809 0.2835 0.3443 0.1921 0.3926 0.4856 0.4636

washington 0.0599 0.0752 0.0910 0.0538 0.0504 0.0649 0.3679 0.1841 0.1655 0.4311 0.4862 0.5169
wisconsin 0.0530 0.0759 0.0680 0.0749 0.0689 0.0852 0.3892 0.3384 0.1651 0.5338 0.5500 0.5706

cora 0.2673 0.3387 0.2202 0.3157 0.3660 0.3445 0.6711 0.6398 0.4832 0.5392 0.7010 0.7358
citeseer 0.0552 0.1190 0.0340 0.1592 0.2499 0.1030 0.6963 0.6819 0.4014 0.4657 0.7324 0.7711

Table 4: Results of node classification on 6 datasets.
Macro-F1 Micro-F1

Datasets MF DeepWalk LINE Node2Vec ComE vGraph MF DeepWalk LINE Node2Vec ComE vGraph
Cornell 13.05 22.69 21.78 20.70 19.86 29.76 15.25 33.05 23.73 24.58 25.42 37.29
Texas 8.74 21.32 16.33 14.95 15.46 26.00 14.03 40.35 27.19 25.44 33.33 47.37

Washington 15.88 18.45 13.99 21.23 15.80 30.36 15.94 34.06 25.36 28.99 33.33 34.78
Wisconsin 14.77 23.44 19.06 18.47 14.63 29.91 18.75 38.75 28.12 25.00 32.50 35.00

Cora 11.29 13.21 11.86 10.52 12.88 16.23 12.79 22.32 14.59 27.74 28.04 24.35
Citeseer 14.59 16.17 15.99 16.68 12.88 17.88 15.79 19.01 16.80 20.82 19.42 20.42

5.5 Results

Table 2 shows the results on overlapping community detection. Some of the methods are not very scalable and cannot
obtain results in 24 hours on some larger datasets. Compared with these studies, vGraph outperforms all baseline
methods in 11 out of 14 datasets in terms of F1-score or Jaccard Similarity, as it is able to leverage useful representations
at node level. Moreover, vGraph is also very efficient on these datasets, since we use employ variational inference
and parameterize the model with node and community embeddings. By adding the smoothness regularization term
(vGraph+), we see a farther increase performance, which shows that our method can be combined with concepts from
traditional community detection methods.

The results for non-overlapping community detection are presented in Table 3. vGraph outperforms all conventional
node embeddings + K-Means in 4 out of 6 datasets in terms of NMI and outperforms all 6 in terms of modularity.
ComE, another framework that jointly solves node embedding and community detection, also generally performs better
than other node embedding methods + K-Means. This supports our claim that learning these two tasks collaboratively
instead of sequentially can further enhance performance. Compare to ComE, vGraph performs better in 4 out of 6
datasets in terms of NMI and 5 out of 6 datasets in terms of modularity. This shows that vGraph can also outperform
frameworks that learn node representations and communities together.

Table 4 shows the result for the node classification task. vGraph significantly outperforms all the baseline methods in 9
out of 12 datasets. The reason is that most baseline methods only consider the local graph information without modeling
the global semantics. vGraph solves this problem by representing node embeddings as a mixture of communities to
incorporate global context.

5.6 Visualization

In order to gain more insight, we present visualizations of the facebook107 dataset in Fig. 2(a). To demonstrate that
our model can be applied to large networks, we present results of vGraph on a co-authorship network with around
100,000 nodes and 330,000 edges in Fig. 2(b). More visualizations are available in appendix B. We can observe that
the community structure, or “social context”, is reflected in the corresponding node embedding (node positions in
both visualizations are determined by t-SNE of the node embeddings). To demonstrate the hierarchical extension of
our model, we visualize a subset of the co-authorship dataset in Fig. 3. We visualize the first-tier communities and
second-tier communities in panel (a) and (b) respectively. We can observe that the second-tier communities grouped
under the same first-tier communities interact more with themselves than they do with other second-tier communities.

6 Conclusion

In this paper, we proposed vGraph, a method that performs overlapping (and non-overlapping) community detection
and learns node and community embeddings at the same time. vGraph casts the generation of edges in a graph as an
inference problem. To encourage collaborations between community detection and node representation learning, we
assume that each node can be represented by a mixture of communities, and each community is defined as a multinomial
distribution over nodes. We also design a smoothness regularizer in the latent space to encourage neighboring nodes to
be similar. Empirical evaluation on 20 different benchmark datasets demonstrates the effectiveness of the proposed
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Vertex classification

vGraph: A Generative Model for Joint Community Detection and Node Representation Learning

Table 3: Evaluation (in terms of NMI and Modularity) on networks with non-overlapping ground-truth communities.
NMI Modularity

Dataset MF deepwalk LINE node2vec ComE vGraph MF deepwalk LINE node2vec ComE vGraph
cornell 0.0632 0.0789 0.0697 0.0712 0.0732 0.0803 0.4220 0.4055 0.2372 0.4573 0.5748 0.5792
texas 0.0562 0.0684 0.1289 0.0655 0.0772 0.0809 0.2835 0.3443 0.1921 0.3926 0.4856 0.4636

washington 0.0599 0.0752 0.0910 0.0538 0.0504 0.0649 0.3679 0.1841 0.1655 0.4311 0.4862 0.5169
wisconsin 0.0530 0.0759 0.0680 0.0749 0.0689 0.0852 0.3892 0.3384 0.1651 0.5338 0.5500 0.5706

cora 0.2673 0.3387 0.2202 0.3157 0.3660 0.3445 0.6711 0.6398 0.4832 0.5392 0.7010 0.7358
citeseer 0.0552 0.1190 0.0340 0.1592 0.2499 0.1030 0.6963 0.6819 0.4014 0.4657 0.7324 0.7711

Table 4: Results of node classification on 6 datasets.
Macro-F1 Micro-F1

Datasets MF DeepWalk LINE Node2Vec ComE vGraph MF DeepWalk LINE Node2Vec ComE vGraph
Cornell 13.05 22.69 21.78 20.70 19.86 29.76 15.25 33.05 23.73 24.58 25.42 37.29
Texas 8.74 21.32 16.33 14.95 15.46 26.00 14.03 40.35 27.19 25.44 33.33 47.37

Washington 15.88 18.45 13.99 21.23 15.80 30.36 15.94 34.06 25.36 28.99 33.33 34.78
Wisconsin 14.77 23.44 19.06 18.47 14.63 29.91 18.75 38.75 28.12 25.00 32.50 35.00

Cora 11.29 13.21 11.86 10.52 12.88 16.23 12.79 22.32 14.59 27.74 28.04 24.35
Citeseer 14.59 16.17 15.99 16.68 12.88 17.88 15.79 19.01 16.80 20.82 19.42 20.42

5.5 Results

Table 2 shows the results on overlapping community detection. Some of the methods are not very scalable and cannot
obtain results in 24 hours on some larger datasets. Compared with these studies, vGraph outperforms all baseline
methods in 11 out of 14 datasets in terms of F1-score or Jaccard Similarity, as it is able to leverage useful representations
at node level. Moreover, vGraph is also very efficient on these datasets, since we use employ variational inference
and parameterize the model with node and community embeddings. By adding the smoothness regularization term
(vGraph+), we see a farther increase performance, which shows that our method can be combined with concepts from
traditional community detection methods.

The results for non-overlapping community detection are presented in Table 3. vGraph outperforms all conventional
node embeddings + K-Means in 4 out of 6 datasets in terms of NMI and outperforms all 6 in terms of modularity.
ComE, another framework that jointly solves node embedding and community detection, also generally performs better
than other node embedding methods + K-Means. This supports our claim that learning these two tasks collaboratively
instead of sequentially can further enhance performance. Compare to ComE, vGraph performs better in 4 out of 6
datasets in terms of NMI and 5 out of 6 datasets in terms of modularity. This shows that vGraph can also outperform
frameworks that learn node representations and communities together.

Table 4 shows the result for the node classification task. vGraph significantly outperforms all the baseline methods in 9
out of 12 datasets. The reason is that most baseline methods only consider the local graph information without modeling
the global semantics. vGraph solves this problem by representing node embeddings as a mixture of communities to
incorporate global context.

5.6 Visualization

In order to gain more insight, we present visualizations of the facebook107 dataset in Fig. 2(a). To demonstrate that
our model can be applied to large networks, we present results of vGraph on a co-authorship network with around
100,000 nodes and 330,000 edges in Fig. 2(b). More visualizations are available in appendix B. We can observe that
the community structure, or “social context”, is reflected in the corresponding node embedding (node positions in
both visualizations are determined by t-SNE of the node embeddings). To demonstrate the hierarchical extension of
our model, we visualize a subset of the co-authorship dataset in Fig. 3. We visualize the first-tier communities and
second-tier communities in panel (a) and (b) respectively. We can observe that the second-tier communities grouped
under the same first-tier communities interact more with themselves than they do with other second-tier communities.

6 Conclusion

In this paper, we proposed vGraph, a method that performs overlapping (and non-overlapping) community detection
and learns node and community embeddings at the same time. vGraph casts the generation of edges in a graph as an
inference problem. To encourage collaborations between community detection and node representation learning, we
assume that each node can be represented by a mixture of communities, and each community is defined as a multinomial
distribution over nodes. We also design a smoothness regularizer in the latent space to encourage neighboring nodes to
be similar. Empirical evaluation on 20 different benchmark datasets demonstrates the effectiveness of the proposed
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Visualization
vGraph: A Generative Model for Joint Community Detection and Node Representation Learning

(a) (b)

Figure 2: In panel (a) we visualize the result on the facebook107 dataset using vGraph. In panel (b) we visualize
the result on Dblp-full dataset using vGraph. The coordinates of the nodes are determined by t-SNE of the node
embeddings.

(a) (b) (c)

Figure 3: We visualize the result on a subset of Dblp dataset using two-level hierarchical vGraph. The coordinates of
the nodes are determined by t-SNE of the node embeddings. In panel (a) we visualize the first-tier communities. In
panel (b), we visualize the second-tier communities. In panel (c) we show the corresponding hierarchical tree structure.

method on both tasks compared to competitive baselines. Furthermore, our model is also readily extendable to detect
hierarchical communities.
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Conclusion

This paper presented a probabilistic method for jointly solving community
detection and node representation learning. Experiments show that it performs
well for both tasks.
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