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Introduction

▶ Convolutional neural networks (CNNs) have been very succesful in
image-related tasks.

▶ Images can be considered as special cases of graphs, in which nodes lie on
regular 2D lattices.

▶ An important part of CNNs is the pooling (down-sampling) operation, which
enables high-level feature encoding and receptive field enlargement.
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Related works

▶ Topology based pooling: O(|V |3) for eigendecomposition; result is not very
good.

▶ DiffPool∗: O(k|V |2)

∗Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and Leskovec, J. Hierarchical
graph representation learning with differentiable pooling. CoRR, abs/1806.08804, 2018.
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Graph U-Nets

▶ Proposed gPool and gUnpool operation that are counterparts of the pooling
and up-sampling of CNNs respectively.

▶ A encoder-decoder structure based on the two operations. Similar to the
U-Net for images.

▶ Experiments show it outperforms the GNNs without gPool and gUnpool
operations in both inductive and transductive tasks.
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gPool operation

Xl+1 = σ(D̂− 1
2 ÂD̂− 1

2XlWl)w�
y = X lpl/∥pl∥,

idx = rank(y, k),

ỹ = sigmoid(y(idx)),

X̃ l = X(idx, :),

Al+1 = Al(idx, idx),

X l+1 = X̃ l ⊙ (ỹ1T
C)
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gUnpool operation
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Graph U-Net
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Graph Augmentation

After the removal of some nodes, the graph may be broken into disconnected
parts. To handle this, Graph U-Net augments the graph with:

A2 = AlAl, Al+1 = A2(idx, idx)

Also they empirically found that adding higher weights to self-loops can increase
the performance:

Â = A+ 2I
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Datasets
Graph U-Nets

Table 1. Summary of datasets used in our node classification experiments (Yang et al., 2016; Zitnik & Leskovec, 2017). The Cora, Citeseer,
and Pubmed datasets are used for transductive learning experiments.

Dataset Nodes Features Classes Training Validation Testing Degree
Cora 2708 1433 7 140 500 1000 4
Citeseer 3327 3703 6 120 500 1000 5
Pubmed 19717 500 3 60 500 1000 6

Table 2. Summary of datasets used in our inductive learning experiments. The D&D (Dobson & Doig, 2003), PROTEINS (Borgwardt
et al., 2005), and COLLAB (Yanardag & Vishwanathan, 2015) datasets are used for inductive learning experiments.

Dataset Graphs Nodes (max) Nodes (avg) Classes
D&D 1178 5748 284.32 2
PROTEINS 1113 620 39.06 2
COLLAB 5000 492 74.49 3

representing a document and a citation, respectively. The
feature vector of each node is the bag-of-word representation
whose dimension is determined by the dictionary size. We
follow the same experimental settings in (Kipf & Welling,
2017). For each class, there are 20 nodes for training, 500
nodes for validation, and 1000 nodes for testing.

Under inductive learning settings, testing data are not avail-
able during training, which means the training process
does not use graph structures of testing data. We evalu-
ate our methods on relatively large graph datasets selected
from common benchmarks used in graph classification
tasks (Ying et al., 2018; Niepert et al., 2016; Zhang et al.,
2018). We use protein datasets including D&D (Dobson &
Doig, 2003) and PROTEINS (Borgwardt et al., 2005), the
scientific collaboration dataset COLLAB (Yanardag & Vish-
wanathan, 2015). These data are summarized in Table 2.

4.2. Experimental Setup

We describe the experimental setup for both transductive
and inductive learning settings. For transductive learning
tasks, we employ our proposed g-U-Nets proposed in Sec-
tion 3.3. Since nodes in the three datasets are associated
with high-dimensional features, we employ a GCN layer
to reduce them into low-dimensional representations. In
the encoder part, we stack four blocks, each of which con-
sists of a gPool layer and a GCN layer. We sample 2000,
1000, 500, 200 nodes in the four gPool layers, respectively.
Correspondingly, the decoder part also contains four blocks.
Each decoder block is composed of a gUnpool layer and a
GCN layer. We use addition operation in skip connections
between blocks of encoder and decoder parts. Finally, we
apply a GCN layer for final prediction. For all layers in the
model, we use identity activation function (Gao et al., 2018)
after each GCN layer. To avoid over-fitting, we apply L2

regularization on weights with λ = 0.001. Dropout (Sri-
vastava et al., 2014) is applied to both adjacency matrices

and feature matrices with keep rates of 0.8 and 0.08, respec-
tively.

For inductive learning tasks, we follow the same experi-
mental setups in (Zhang et al., 2018) using our g-U-Nets
architecture as described in transductive learning settings for
feature extraction. Since the sizes of graphs vary in graph
classification tasks, we sample proportions of nodes in four
gPool layers; those are 90%, 70%, 60%, and 50%, respec-
tively. The dropout keep rate imposed on feature matrices is
0.3.

4.3. Performance Study

Under transductive learning settings, we compare our pro-
posed g-U-Nets with other state-of-the-art models in terms
of node classification accuracy. We report node classifica-
tion accuracies on datasets Cora, Citeseer, and Pubmed, and
the results are summarized in Table 3. We can observe from
the results that our g-U-Nets achieves consistently better
performance than other networks. For baseline values listed
for node classification tasks, they are the state-of-the-art
on these datasets. Our proposed model is composed of
GCN, gPool, and gUnpool layers without involving more
advanced graph convolution layers like GAT. When com-
pared to GCN directly, our g-U-Nets significantly improves
performance on all three datasets by margins of 2.9%, 2.9%,
and 0.6%, respectively. Note that the only difference be-
tween our g-U-Nets and GCN is the use of encoder-decoder
architecture containing gPool and gUnpool layers. These
results demonstrate the effectiveness of g-U-Nets in network
embedding.

Under inductive learning settings, we compared our meth-
ods with other state-of-the-art models on graph classification
tasks with datasets D&D, PROTEINS, and COLLAB, and
the results are summarized in Table 4. We can observe from
the results that our proposed gPool method outperforms
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Transductive task (node classification)
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Table 3. Results of transductive learning experiments in terms of node classification accuracies on Cora, Citeseer, and Pubmed datasets.
g-U-Nets denotes our proposed graph U-Nets model.

Models Cora Citeseer Pubmed
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%
GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
GAT (Veličković et al., 2017) 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%
g-U-Nets (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

Table 4. Results of inductive learning experiments in terms of graph classification accuracies on D&D, PROTEINS, and COLLAB datasets.
g-U-Nets denotes our proposed graph U-Nets model.

Models D&D PROTEINS COLLAB
PSCN (Niepert et al., 2016) 76.27% 75.00% 72.60%
DGCNN (Zhang et al., 2018) 79.37% 76.26% 73.76%
DiffPool-DET (Ying et al., 2018) 75.47% 75.62% 82.13%
DiffPool-NOLP (Ying et al., 2018) 79.98% 76.22% 75.58%
DiffPool (Ying et al., 2018) 80.64% 76.25% 75.48%
g-U-Nets (Ours) 82.43% 77.68% 77.56%

DiffPool (Ying et al., 2018) by margins of 1.79% and 1.43%
on the D&D and PROTEINS datasets. Notably, the result ob-
tained by DiffPool-DET on COLLAB is significantly higher
than all other methods and the other two DiffPool models.
On all three datasets, our model outperforms baseline mod-
els including DiffPool. In addition, DiffPool claimed that
their training utilized auxiliary task of link prediction to sta-
bilize model performance, which indicates the instability of
DiffPool model. But in our experiments, we only use graph
labels for training without any auxiliary tasks to stabilize
training.

4.4. Ablation Study of gPool and gUnpool layers

Although GCNs have been reported to have worse perfor-
mance when the network goes deeper (Kipf & Welling,
2017), it may also be argued that the performance improve-
ment over GCN in Table 3 is due to the use of a deeper
network architecture. In this section, we investigate the
contributions of gPool and gUnpool layers to the perfor-
mance of g-U-Nets. We conduct experiments by removing
all gPool and gUnpool layers from our g-U-Nets, leading
to a network with only GCN layers with skip connections.
Table 5 provides the comparison results between g-U-Nets
with and without gPool or gUnpool layers. The results show
that g-U-Nets have better performance over g-U-Nets with-
out gPool or gUnpool layers by margins of 2.3%, 1.6% and
0.5% on Cora, Citeseer, and Pubmed datasets, respectively.
These results demonstrate the contributions of gPool and
gUnpool layers to performance improvement. When con-
sidering the difference between the two models in terms of

architecture, g-U-Nets enable higher level feature encoding,
thereby resulting in better generalization and performance.

4.5. Graph Connectivity Augmentation Study

In the above experiments, we employ gPool layers with
graph connectivity augmentation by using the 2nd graph
power in Section 3.4. Here, we conduct experiments on node
classification tasks to investigate the benefits of graph con-
nectivity augmentation based on g-U-Nets. We remove the
graph connectivity augmentation from gPool layers while
keeping other settings the same for fairness of comparisons.
Table 6 provides comparison results between g-U-Nets with
and without graph connectivity augmentation. The results
show that the absence of graph connectivity augmentation
will cause consistent performance degradation on all of
three datasets. This demonstrates that graph connectivity
augmentation via 2nd graph power can help with the graph
connectivity and information transfer among nodes in sam-
pled graphs.

4.6. Network Depth Study of Graph U-Nets

Since the network depth in terms of the number of blocks in
encoder and decoder parts is an important hyper-parameter
in the g-U-Nets, we conduct experiments to investigate the
relationship between network depth and performance in
terms of node classification accuracy. We use different
network depths on node classification tasks and report the
classification accuracies. The results are summarized in Ta-
ble 7. We can observe from the results that the performance
improves as network goes deeper until a depth of 4. The
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Table 3. Results of transductive learning experiments in terms of node classification accuracies on Cora, Citeseer, and Pubmed datasets.
g-U-Nets denotes our proposed graph U-Nets model.

Models Cora Citeseer Pubmed
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%
GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
GAT (Veličković et al., 2017) 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%
g-U-Nets (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

Table 4. Results of inductive learning experiments in terms of graph classification accuracies on D&D, PROTEINS, and COLLAB datasets.
g-U-Nets denotes our proposed graph U-Nets model.

Models D&D PROTEINS COLLAB
PSCN (Niepert et al., 2016) 76.27% 75.00% 72.60%
DGCNN (Zhang et al., 2018) 79.37% 76.26% 73.76%
DiffPool-DET (Ying et al., 2018) 75.47% 75.62% 82.13%
DiffPool-NOLP (Ying et al., 2018) 79.98% 76.22% 75.58%
DiffPool (Ying et al., 2018) 80.64% 76.25% 75.48%
g-U-Nets (Ours) 82.43% 77.68% 77.56%

DiffPool (Ying et al., 2018) by margins of 1.79% and 1.43%
on the D&D and PROTEINS datasets. Notably, the result ob-
tained by DiffPool-DET on COLLAB is significantly higher
than all other methods and the other two DiffPool models.
On all three datasets, our model outperforms baseline mod-
els including DiffPool. In addition, DiffPool claimed that
their training utilized auxiliary task of link prediction to sta-
bilize model performance, which indicates the instability of
DiffPool model. But in our experiments, we only use graph
labels for training without any auxiliary tasks to stabilize
training.

4.4. Ablation Study of gPool and gUnpool layers

Although GCNs have been reported to have worse perfor-
mance when the network goes deeper (Kipf & Welling,
2017), it may also be argued that the performance improve-
ment over GCN in Table 3 is due to the use of a deeper
network architecture. In this section, we investigate the
contributions of gPool and gUnpool layers to the perfor-
mance of g-U-Nets. We conduct experiments by removing
all gPool and gUnpool layers from our g-U-Nets, leading
to a network with only GCN layers with skip connections.
Table 5 provides the comparison results between g-U-Nets
with and without gPool or gUnpool layers. The results show
that g-U-Nets have better performance over g-U-Nets with-
out gPool or gUnpool layers by margins of 2.3%, 1.6% and
0.5% on Cora, Citeseer, and Pubmed datasets, respectively.
These results demonstrate the contributions of gPool and
gUnpool layers to performance improvement. When con-
sidering the difference between the two models in terms of

architecture, g-U-Nets enable higher level feature encoding,
thereby resulting in better generalization and performance.

4.5. Graph Connectivity Augmentation Study

In the above experiments, we employ gPool layers with
graph connectivity augmentation by using the 2nd graph
power in Section 3.4. Here, we conduct experiments on node
classification tasks to investigate the benefits of graph con-
nectivity augmentation based on g-U-Nets. We remove the
graph connectivity augmentation from gPool layers while
keeping other settings the same for fairness of comparisons.
Table 6 provides comparison results between g-U-Nets with
and without graph connectivity augmentation. The results
show that the absence of graph connectivity augmentation
will cause consistent performance degradation on all of
three datasets. This demonstrates that graph connectivity
augmentation via 2nd graph power can help with the graph
connectivity and information transfer among nodes in sam-
pled graphs.

4.6. Network Depth Study of Graph U-Nets

Since the network depth in terms of the number of blocks in
encoder and decoder parts is an important hyper-parameter
in the g-U-Nets, we conduct experiments to investigate the
relationship between network depth and performance in
terms of node classification accuracy. We use different
network depths on node classification tasks and report the
classification accuracies. The results are summarized in Ta-
ble 7. We can observe from the results that the performance
improves as network goes deeper until a depth of 4. The
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Table 5. Comparison of g-U-Nets with and without gPool or gUnpool layers in terms of node classification accuracy on Cora, Citeseer,
and Pubmed datasets.

Models Cora Citeseer Pubmed
g-U-Nets without gPool or gUnpool 82.1 ± 0.6% 71.6 ± 0.5% 79.1 ± 0.2%
g-U-Nets (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

Table 6. Comparison of g-U-Nets with and without graph connectivity augmentation in terms of node classification accuracy on Cora,
Citeseer, and Pubmed datasets.

Models Cora Citeseer Pubmed
g-U-Nets without augmentation 83.7 ± 0.7% 72.5 ± 0.6% 79.0 ± 0.3%
g-U-Nets (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

Table 7. Comparison of different network depths in terms of node classification accuracy on Cora, Citeseer, and Pubmed datasets. Based
on g-U-Nets, we experiment with different network depths in terms of the number of blocks in encoder and decoder parts.

Depth Cora Citeseer Pubmed
2 82.6 ± 0.6% 71.8 ± 0.5% 79.1 ± 0.3%
3 83.8 ± 0.7% 72.7 ± 0.7% 79.4 ± 0.4%
4 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%
5 84.1 ± 0.5% 72.8 ± 0.6% 79.5 ± 0.3%

Table 8. Comparison of the g-U-Nets with and without gPool or gUnpool layers in terms of the node classification accuracy and the
number of parameters on Cora dataset.

Models Accuracy #Params Ratio of increase
g-U-Nets without gPool or gUnpool 82.1 ± 0.6% 75,643 0.00%
g-U-Nets (Ours) 84.4 ± 0.6% 75,737 0.12%

over-fitting problem happens in deeper networks and pre-
vents networks from improving when the depth goes beyond
that. In image segmentation, U-Net models with depth 3 or
4 are commonly used (Badrinarayanan et al., 2017; Çiçek
et al., 2016), which is consistent with our choice in exper-
iments. This indicates the capacity of gPool and gUnpool
layers in receptive field enlargement and high-level feature
encoding even working with very shallow networks.

4.7. Parameter Study of Graph Pooling Layers

Since our proposed gPool layer involves extra parameters,
we compute the number of additional parameters based
on our g-U-Nets. The comparison results between g-U-
Nets with and without gPool or gUnpool layers on dataset
Cora are summarized in Table 8. From the results, we can
observe that gPool layers in U-Net model only adds 0.12%
additional parameters but can promote the performance by
a margin of 2.3%. We believe this negligible increase of
extra parameters will not increase the risk of over-fitting.
Compared to g-U-Nets without gPool or gUnpool layers, the
encoder-decoder architecture with our gPool and gUnpool
layers yields significant performance improvement.

5. Conclusion
In this work, we propose novel gPool and gUnpool layers in
g-U-Nets networks for network embedding. The gPool layer
implements the regular global k-max pooling operation on
graph data. It samples a subset of important nodes to en-
able high-level feature encoding and receptive field enlarge-
ment. By employing a trainable projection vector, gPool
layers sample nodes based on their scalar projection values.
Furthermore, we propose the gUnpool layer which applies
unpooling operations on graph data. By using the position
information of nodes in the original graph, gUnpool layer
performs the inverse operation of the corresponding gPool
layer and restores the original graph structure. Based on our
gPool and gUnpool layers, we propose the graph U-Nets (g-
U-Nets) architecture which uses a similar encoder-decoder
architecture as regular U-Net on image data. Experimental
results demonstrate that our g-U-Nets achieve performance
improvements as compared to other GNNs on transductive
learning tasks. To avoid the isolated node problem that may
exist in sampled graphs, we employ the 2nd graph power
to improve graph connectivity. Ablation studies indicate
the contributions of our graph connectivity augmentation
approach.
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Table 5. Comparison of g-U-Nets with and without gPool or gUnpool layers in terms of node classification accuracy on Cora, Citeseer,
and Pubmed datasets.

Models Cora Citeseer Pubmed
g-U-Nets without gPool or gUnpool 82.1 ± 0.6% 71.6 ± 0.5% 79.1 ± 0.2%
g-U-Nets (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

Table 6. Comparison of g-U-Nets with and without graph connectivity augmentation in terms of node classification accuracy on Cora,
Citeseer, and Pubmed datasets.

Models Cora Citeseer Pubmed
g-U-Nets without augmentation 83.7 ± 0.7% 72.5 ± 0.6% 79.0 ± 0.3%
g-U-Nets (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

Table 7. Comparison of different network depths in terms of node classification accuracy on Cora, Citeseer, and Pubmed datasets. Based
on g-U-Nets, we experiment with different network depths in terms of the number of blocks in encoder and decoder parts.

Depth Cora Citeseer Pubmed
2 82.6 ± 0.6% 71.8 ± 0.5% 79.1 ± 0.3%
3 83.8 ± 0.7% 72.7 ± 0.7% 79.4 ± 0.4%
4 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%
5 84.1 ± 0.5% 72.8 ± 0.6% 79.5 ± 0.3%

Table 8. Comparison of the g-U-Nets with and without gPool or gUnpool layers in terms of the node classification accuracy and the
number of parameters on Cora dataset.

Models Accuracy #Params Ratio of increase
g-U-Nets without gPool or gUnpool 82.1 ± 0.6% 75,643 0.00%
g-U-Nets (Ours) 84.4 ± 0.6% 75,737 0.12%

over-fitting problem happens in deeper networks and pre-
vents networks from improving when the depth goes beyond
that. In image segmentation, U-Net models with depth 3 or
4 are commonly used (Badrinarayanan et al., 2017; Çiçek
et al., 2016), which is consistent with our choice in exper-
iments. This indicates the capacity of gPool and gUnpool
layers in receptive field enlargement and high-level feature
encoding even working with very shallow networks.

4.7. Parameter Study of Graph Pooling Layers

Since our proposed gPool layer involves extra parameters,
we compute the number of additional parameters based
on our g-U-Nets. The comparison results between g-U-
Nets with and without gPool or gUnpool layers on dataset
Cora are summarized in Table 8. From the results, we can
observe that gPool layers in U-Net model only adds 0.12%
additional parameters but can promote the performance by
a margin of 2.3%. We believe this negligible increase of
extra parameters will not increase the risk of over-fitting.
Compared to g-U-Nets without gPool or gUnpool layers, the
encoder-decoder architecture with our gPool and gUnpool
layers yields significant performance improvement.

5. Conclusion
In this work, we propose novel gPool and gUnpool layers in
g-U-Nets networks for network embedding. The gPool layer
implements the regular global k-max pooling operation on
graph data. It samples a subset of important nodes to en-
able high-level feature encoding and receptive field enlarge-
ment. By employing a trainable projection vector, gPool
layers sample nodes based on their scalar projection values.
Furthermore, we propose the gUnpool layer which applies
unpooling operations on graph data. By using the position
information of nodes in the original graph, gUnpool layer
performs the inverse operation of the corresponding gPool
layer and restores the original graph structure. Based on our
gPool and gUnpool layers, we propose the graph U-Nets (g-
U-Nets) architecture which uses a similar encoder-decoder
architecture as regular U-Net on image data. Experimental
results demonstrate that our g-U-Nets achieve performance
improvements as compared to other GNNs on transductive
learning tasks. To avoid the isolated node problem that may
exist in sampled graphs, we employ the 2nd graph power
to improve graph connectivity. Ablation studies indicate
the contributions of our graph connectivity augmentation
approach.

This suggests that the improvement is not a result of more parameters, and
adding gPool and gUnpool will not increase the risk of over-fitting.



What I learnt

▶ We can find inspirations from CNN techniques when dealing with GNN.

▶ The adjacency matrix can be augmented to impose different weights for
links.



Thank you!


	Introduction
	Graph U-Nets
	Evaluation
	Appendix

