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GPU Under-utilization in CNN

A recent trend in CNN design is to
replace a single branch of convolutions
with multiple branches of convolutions.
As a result, the number of convolutions
grows while the computation FLOPs in
each convolution becomes smaller.
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Existing Approaches

» Intra-operator parallelism (TVM) executes arithmetic operations within a
single operator in parallel. However, the degree of parallelism within an
operator is limited, especially when the Conv operations are becoming
smaller.

» Graph transformation (MetaFlow, TASO) explores merging and
substituting operators to enable more parallelism. However, the possible
merging are limited to same type of operators.

» Inter-operator scheduling (Graphi, Rammer, Nimble) schedules some
operators to run concurrently. However, they use simple heuristics and don't
lead to global optimal.
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|OS: Inter-Operator Scheduler

This paper introduces 10S, a novel dynamic programming algorithm to find a
highly optimized schedule for inter-operator parallelization.
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Problem Definition
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Graph and Stage

@ Input/ Output Schedule Q= (a. b} “operator merge”,

A CNN is defined as a DAG G = (V, E), (c.6. ) “concurront execution’

where V' is the set of operators, and E is
the edge set representing dependencies. s 1
(Operat?greMerge)

The computation graph is partitioned
into multiple stages. Stages are
executed sequentially and the operators
in the same stage are executed according
to a certain parallelization strategy. (1) Computation Graph (2) AFeasible Schedule Q

Stage 2
(Concurrent Executior
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Parallelization Strategy

Operator merge merges multiple
operators of the same type together.
For example, an 3x3 Conv can be
merged with a 5x5 Conv, by padding
and concatenating the kernels.

Under concurrent execution, the
operators in the stage that have no
dependencies are executed concurrently
with multiple CUDA streams.
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Schedule Q =[ (a, b} “operator merge”,
{c. d. e} "concurrent execution”]

@ Input/ Output

Merged Conv [a & b]
Stage 1

(Operator Merge)

Stage 2
(Concurrent Executior

(1) Computation Graph (2) A Feasible Schedule Q

Summary
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Schedule

A Schedgle Q = {(Sl, Tl), (Sg, TQ), . } @ Input/ Output ScheduleQ=[(C'(::Z;:mzm$:r§;&bm_'
is an assignment of operators .S; to the
i-th stage and the parallelization

strategy 7; of the i-th stage. P
. . - . eenvial | i Group 2

[0S finds a schedule @Q* that minimizes =5 | ConvIel) covdes s/

a cost function ¢ for a given graph G, | (Mamulle]] /el s -

""""""" (Concurrent Executior

e, Q" =argmingce(G, Q). In this work,
c is defined as the latency of running GG
following schedule Q).

(1) Computation Graph (2) A Feasible Schedule Q
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Main ldea

For an ending S’ of S, we have:

cost[S] = rréiln(cost[S — '] + stage_latency[S'])

27 29
] f] : ES’ (o]

(1) Operators V (2)S’is an (3)S’is notan  (4) Partition graph by
ending of V ending of V endings recursively
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Core Function

function SCHEDULER(S)
if cost[S] # oo then
return cost[S]

for all ending S’ of S satisfying pruning strategy P do
Lg/, Tg: = GENERATESTAGE(S’)
Ls = SCHEDULER(S — S') +Lg
if Ls < cost[S] then
cost[S] = Lsg
choice[S] = (S, Ts)
return cost[S]

Summary
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= Apossible choice

Cholce

= Best choice for &
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Ops remain to be
scheduled

i Best choice for S and 6

® Input/Output

.».ocunpuvnnon path

(1) Computation Graph G

Oplimized by 108 cholce((a, b, ¢)) (b, ¢)

cost((a, b, )] 08ms

Sufac) Choice

8§ (b, c)
Ly* 0.4 ms
L,s08ms

cholcel(a, )] (c)
cost((a, ¢)) 07 ms

8o, )
Ly207ms
Ly 07 ms

8 fe) ‘

Ops In the last
#tage of S

§' # the enumerated ops as the last stage
L # the latency of stage 5’ (concurrent execution)
L, * the latency of S for the current choice of &'

The operators to be The choice ops are
scheduled shown in re

cholce(S]: the best choice for last stage
cost(S]: the latency of § for the best choice
State

Sufab)

a8

cholce((a, b)) (a, b)
cost((a, b)) 0.6 ms

Ly*02ms
Ly 06ms

S (a) Choice 81 (c) Choice
s Cholce *
Y - " 1,003
choice((a)] (o) Ly 04 ms chalce(()) () s 1 IIME chaical(e)) ()
costl(a)] 04 ms Ly 04 ms cont(()] Oms Ly 03 ms costl(e)] 0.3 ma

(2) Dynamic Programming States nnd Transitions
(Schaduler In Algorit
LIL L LT UL 0 TR AR i

Evaluation
000000000

Sufab,c)
Qe

Suab,c)

By Oy

¥ cholcef(a, b, ¢)) (b, ¢)

5 (a)
Qb))

ERI0) Decision

0 o

choice((a)) (o)

s ()
Q- ((a), (b )
Found schedule Q = ((a), (b, ¢))

(3) Schedule Construction Path
(InterOperatorScheduler L6-11 in
Algorithm 1)

a Stage 1
u u Stage 2
(4) Schedule Found by 108

Summary
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Time Complexity

Definition: d is the width of GG, if we can find at most d operators in G such
that there is no path connecting any two of them.

Theorem: The time complexity of 10S is O((”/‘;”)d), which can be relaxed to
O((n/d + 1)*), where n is the number of operators in G and d is its width.

Model n d (“4%)7 #(S,8') #Schedules

d
Inception V3 11 6 2.6 x 107 4.9 x 10° 3.8 x 10°
Randwire 33 8 3.7x10° 1.2x10° 9.2 x 10?2
8
3

NasNet 18 5.2 x10° 3.1 x 105 7.2 x 10*?
SqueezeNet 6 2.2 x 102 51 1.3 x 10?
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Pruning

|OS without pruning can find the optimal strategy for the benchmarked graphs in
4 hours. To further reduce the search time, 10S introduces two parameters r and
s. P.s(S,5") = True if and only if S’ has at most s groups and each group has
at most r operators.
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Experiments Setup

Hardware: NVIDIA Tesla V100

Execution Engine: A cuDNN-based C++ execution engine.

>
>
» Models: Inception V3, RandWire, NasNet-A, and SqueezeNet
» Baselines: TensorRT and TVM

>

Pruning Parameters: r =3 and s = 8
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Comparison of Different Schedules

[ Sequential B Greedy [ 10S-Merge
[ 10S-Parallel [l 10S-Both
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Comparison of cuDNN-based Frameworks

B Tensorflow [E Tensorflow-XLA [ TASO
0 TVM-cuDNN [ TensorRT M 108
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More Active Warps Improve Utilization

Sequential — 108
10S: 2.7 x 10°® warps/ms

1.58x Active
Warps

#Active Warps Between
Two Timestamps (10°)
()]
~
=

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
Timestamp
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Schedule Pruning Reduces Search Time

Inception V3

NasNet

44

4.2

4.1

4.0

3.9
18.5

17.6

16.8

15.9

15.0

[l Latency (ms)

Optimization Cost (secs)

s=8 s=3
4.26
4.1
4.10
4.03 4.04
[ 17.9
16.7 16.9 16.9
16.0 16.1 l
r=3 r=2 r=1 r=3 r=2 r=1

Evaluation
00000@000

60

45

30

4000

3000

2000

1000

Summary
000



Summary

Evaluation
000

Methods
000000800

Problem Definition
000000

Introduction
0000

0000

Specialized Scheduling is Beneficial

Specia.lization Optimized for Specia.lization Optimized for
for Different for Different
Batch Sizes 1 32 128 Devices K80 | V100
1 4.03 | 450 | 4.63 Execute | K80 | 13.87 | 14.65
Execute
on 32 | 29.21 | 27.44 | 27.93 on V100 | 449 | 4.03
128 | 105.98 | 103.74 | 103.29

(1) Specialization for Batch Sizes (2) Specialization for Devices
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Consistent Improvement for Different Batch Sizes

O Sequential TVM-cuDNN TASO © TensorRT © I0S
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Intra- and Inter-Operator Parallelism

O TVM-AutoTune W I10S
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Conclusion

Strength
» |0OS introduces the concept of stage, which enables dynamic programming.

» The algorithm description is detailed and the open-sourced code is clean.

Limitation

» The paper omits the detail about the profiler. I0S needs the cost of running
multiple operators concurrently, which is not easy to simulate.

» The strategy space is very limited (compared with related works).

» They do not compare with similar works (Rammer etc.) in experiments.
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Takeaways

» Dynamic programming works well with the DAG structure of neural
networks. Other works have explored using dynamic programming for saving
memory, distributed training, etc.

» We can design a reduced search space and use an efficient algorithm to find
the global optimal.
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