Introduction Problem Definition Methods Evaluation Summary
0000 0000 000000 000000000 [e]e]e}

|OS: Inter-Operator Scheduler for CNN Acceleration

Yaoyao Ding!? Ligeng Zhu® Zhihao Jia* Gennady Pekhimenko!:?
Song Han®

LUniversity of Toronto 2Vector Institute 3Massachusetts Institute of Technology *Carnegie Mellon University

Presenter: Shiwei Zhang

Introduction Problem Definition Methods Evaluation Summary
@000 0000 000000 000000000 000

Introduction

Introduction Problem Definition
0e00 0000

GPU Under-utilization in CNN

A recent trend in CNN design is to
replace a single branch of convolutions
with multiple branches of convolutions.
As a result, the number of convolutions
grows while the computation FLOPs in
each convolution becomes smaller.

Methods
000000

10000

100

Evaluation Summary
000000000 000

[0 Average FLOPs per CONV (MFLOPs)
[l Number of CONV
B GPU Peak Performance (GFLOPs / s)

2330

15700
116

8425
il ’_|.Il

2013 2015 2018

Introduction
[eYe] Yo

Existing Approaches

» Intra-operator parallelism (TVM) executes arithmetic operations within a
single operator in parallel. However, the degree of parallelism within an
operator is limited, especially when the Conv operations are becoming
smaller.

» Graph transformation (MetaFlow, TASO) explores merging and
substituting operators to enable more parallelism. However, the possible
merging are limited to same type of operators.

» Inter-operator scheduling (Graphi, Rammer, Nimble) schedules some
operators to run concurrently. However, they use simple heuristics and don't
lead to global optimal.

Introduction Problem Definition Methods Evaluation Summary

ocooe 0000

|OS: Inter-Operator Scheduler

This paper introduces 10S, a novel dynamic programming algorithm to find a
highly optimized schedule for inter-operator parallelization.

Introduction Problem Definition Methods Evaluation Summary
0000 @000 000000 000000000 000

Problem Definition

Introduction Problem Definition Methods Evaluation Summary
0000 [e] le]e} 000000 000000000 000

Graph and Stage

@ Input/ Output Schedule Q= (a. b} “operator merge”,

A CNN is defined as a DAG G = (V, E), (c.6.) “concurront execution’

where V' is the set of operators, and E is
the edge set representing dependencies. s 1
(Operat?greMerge)

The computation graph is partitioned
into multiple stages. Stages are
executed sequentially and the operators
in the same stage are executed according
to a certain parallelization strategy. (1) Computation Graph (2) AFeasible Schedule Q

Stage 2
(Concurrent Executior

Introduction Problem Definition
0000 [e]e] e}

Parallelization Strategy

Operator merge merges multiple
operators of the same type together.
For example, an 3x3 Conv can be
merged with a 5x5 Conv, by padding
and concatenating the kernels.

Under concurrent execution, the
operators in the stage that have no
dependencies are executed concurrently
with multiple CUDA streams.

Evaluation
000000000 [e]e]e}

Methods
000000

Schedule Q =[(a, b} “operator merge”,
{c. d. e} "concurrent execution”]

@ Input/ Output

Merged Conv [a & b]
Stage 1

(Operator Merge)

Stage 2
(Concurrent Executior

(1) Computation Graph (2) A Feasible Schedule Q

Summary

Introduction Problem Definition Methods Evaluation Summary
0000 oooe 000000 000000000 000

Schedule

A Schedgle Q = {(Sl, Tl), (Sg, TQ), . } @ Input/ Output ScheduleQ=[(C'(::Z;:mzm$:r§;&bm_'
is an assignment of operators .S; to the
i-th stage and the parallelization

strategy 7; of the i-th stage. P
. . - . eenvial | i Group 2

[0S finds a schedule @Q* that minimizes =5 | ConvIel) covdes s/

a cost function ¢ for a given graph G, | (Mamulle]] /el s -

""""""" (Concurrent Executior

e, Q" =argmingce(G, Q). In this work,
c is defined as the latency of running GG
following schedule Q).

(1) Computation Graph (2) A Feasible Schedule Q

Introduction Problem Definition Methods Evaluation Summary
0000 0000 000000 000000000 000

Methods

Introduction Problem Definition Methods Evaluation Summary
0000 0000 0@0000 000000000 000

Main ldea

For an ending S’ of S, we have:

cost[S] = rréiln(cost[S — '] + stage_latency[S'])

27 29
] f] : ES’ (o]

(1) Operators V (2)S’is an (3)S’is notan (4) Partition graph by
ending of V ending of V endings recursively

Introduction Problem Definition Methods Evaluation
0000 0000 000000 000000000

Core Function

function SCHEDULER(S)
if cost[S] # oo then
return cost[S]

for all ending S’ of S satisfying pruning strategy P do
Lg/, Tg: = GENERATESTAGE(S’)
Ls = SCHEDULER(S — S') +Lg
if Ls < cost[S] then
cost[S] = Lsg
choice[S] = (S, Ts)
return cost[S]

Summary
000

Introduction
0000

Example

Problem Definition
0000

Sufab,c)

= Apossible choice

Cholce

= Best choice for &

p

Methods
000000

Ops remain to be
scheduled

i Best choice for S and 6

® Input/Output

.».ocunpuvnnon path

(1) Computation Graph G

Oplimized by 108 cholce((a, b, ¢)) (b, ¢)

cost((a, b,)] 08ms

Sufac) Choice

8§ (b, c)
Ly* 0.4 ms
L,s08ms

cholcel(a,)] (c)
cost((a, ¢)) 07 ms

8o,)
Ly207ms
Ly 07 ms

8 fe) ‘

Ops In the last
#tage of S

§' # the enumerated ops as the last stage
L # the latency of stage 5’ (concurrent execution)
L, * the latency of S for the current choice of &'

The operators to be The choice ops are
scheduled shown in re

cholce(S]: the best choice for last stage
cost(S]: the latency of § for the best choice
State

Sufab)

a8

cholce((a, b)) (a, b)
cost((a, b)) 0.6 ms

Ly*02ms
Ly 06ms

S (a) Choice 81 (c) Choice
s Cholce *
Y - " 1,003
choice((a)] (o) Ly 04 ms chalce(()) () s 1 IIME chaical(e)) ()
costl(a)] 04 ms Ly 04 ms cont(()] Oms Ly 03 ms costl(e)] 0.3 ma

(2) Dynamic Programming States nnd Transitions
(Schaduler In Algorit
LIL L LT UL 0 TR AR i

Evaluation
000000000

Sufab,c)
Qe

Suab,c)

By Oy

¥ cholcef(a, b, ¢)) (b, ¢)

5 (a)
Qb))

ERI0) Decision

0 o

choice((a)) (o)

s ()
Q- ((a), (b)
Found schedule Q = ((a), (b, ¢))

(3) Schedule Construction Path
(InterOperatorScheduler L6-11 in
Algorithm 1)

a Stage 1
u u Stage 2
(4) Schedule Found by 108

Summary
000

Methods
000000

Time Complexity

Definition: d is the width of GG, if we can find at most d operators in G such
that there is no path connecting any two of them.

Theorem: The time complexity of 10S is O((”/‘;”)d), which can be relaxed to
O((n/d + 1)*), where n is the number of operators in G and d is its width.

Model n d (“4%)7 #(S,8') #Schedules

d
Inception V3 11 6 2.6 x 107 4.9 x 10° 3.8 x 10°
Randwire 33 8 3.7x10° 1.2x10° 9.2 x 10?2
8
3

NasNet 18 5.2 x10° 3.1 x 105 7.2 x 10*?
SqueezeNet 6 2.2 x 102 51 1.3 x 10?

Methods
00000®

Pruning

|OS without pruning can find the optimal strategy for the benchmarked graphs in
4 hours. To further reduce the search time, 10S introduces two parameters r and
s. P.s(S,5") = True if and only if S’ has at most s groups and each group has
at most r operators.

Introduction Problem Definition Methods Evaluation Summary
0000 0000 000000 @®00000000 000

Evaluation

Introduction Problem Definition Methods Evaluation Summary

0®0000000

Experiments Setup

Hardware: NVIDIA Tesla V100

Execution Engine: A cuDNN-based C++ execution engine.

>
>
» Models: Inception V3, RandWire, NasNet-A, and SqueezeNet
» Baselines: TensorRT and TVM

>

Pruning Parameters: r =3 and s = 8

Introduction Problem Definition Methods Evaluation Summary
0000 0000 000000 00e000000 000

Comparison of Different Schedules

[Sequential B Greedy [10S-Merge
[10S-Parallel [l 10S-Both

1.0
0.8
0.6
0.4
0.2
0.0

Normalzied Throughput

Inception V3 RandWire NasNet SqueezeNet GeoMean

Introduction Problem Definition Methods Evaluation Summary
0000 0000 000000 000e00000 000

Comparison of cuDNN-based Frameworks

B Tensorflow [E Tensorflow-XLA [TASO
0 TVM-cuDNN [TensorRT M 108

1.0
0.8
0.6
0.4
0.2

0.0
Inception V3 RandWire NasNet SqueezeNet GeoMean

Normalized Throughput

Introduction Problem Definition Methods Evaluation Summary
0000 0000 000000 000080000 000

More Active Warps Improve Utilization

Sequential — 108
10S: 2.7 x 10°® warps/ms

1.58x Active
Warps

#Active Warps Between
Two Timestamps (10°)
()]
~
=

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
Timestamp

Introduction
0000

Problem Definition

0000

Methods
000000

Schedule Pruning Reduces Search Time

Inception V3

NasNet

44

4.2

4.1

4.0

3.9
18.5

17.6

16.8

15.9

15.0

[l Latency (ms)

Optimization Cost (secs)

s=8 s=3
4.26
4.1
4.10
4.03 4.04
[17.9
16.7 16.9 16.9
16.0 16.1 l
r=3 r=2 r=1 r=3 r=2 r=1

Evaluation
00000@000

60

45

30

4000

3000

2000

1000

Summary
000

Summary

Evaluation
000

Methods
000000800

Problem Definition
000000

Introduction
0000

0000

Specialized Scheduling is Beneficial

Specia.lization Optimized for Specia.lization Optimized for
for Different for Different
Batch Sizes 1 32 128 Devices K80 | V100
1 4.03 | 450 | 4.63 Execute | K80 | 13.87 | 14.65
Execute
on 32 | 29.21 | 27.44 | 27.93 on V100 | 449 | 4.03
128 | 105.98 | 103.74 | 103.29

(1) Specialization for Batch Sizes (2) Specialization for Devices

Introduction Problem Definition Methods Evaluation Summary
0000 0000 000000 000000080 000

Consistent Improvement for Different Batch Sizes

O Sequential TVM-cuDNN TASO © TensorRT © I0S
1400

1050

w

(9]

PN
\

Throughput (Images/Sec)
~
<

1 16 32 64 128

Introduction Problem Definition Methods Evaluation Summary
0000 0000 000000 0O0000000e 000

Intra- and Inter-Operator Parallelism

O TVM-AutoTune W I10S

1.0 1000
g 0.8 208 §
< 0.
3 100 §¢
£ os
3 £B
% 0.4 0 58
502 3

1

Inception V3 RandWire NasNet SqueezeNet GeoMean All Networks

Introduction Problem Definition Methods Evaluation Summary
0000 0000 000000 000000000 @00

Summary

Summary
oeo

Conclusion

Strength
» |0OS introduces the concept of stage, which enables dynamic programming.

» The algorithm description is detailed and the open-sourced code is clean.

Limitation

» The paper omits the detail about the profiler. I0S needs the cost of running
multiple operators concurrently, which is not easy to simulate.

» The strategy space is very limited (compared with related works).

» They do not compare with similar works (Rammer etc.) in experiments.

Summary
ooe

Takeaways

» Dynamic programming works well with the DAG structure of neural
networks. Other works have explored using dynamic programming for saving
memory, distributed training, etc.

» We can design a reduced search space and use an efficient algorithm to find
the global optimal.

Thank you!

	Introduction
	Problem Definition
	Methods
	Evaluation
	Summary
	Appendix

