Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
[e]e]e} 0000 [e]e]e} 000000000 (e]e] 0000 [e]e]e}

Amazon SageMaker Model Parallelism: A General and
Flexible Framework for Large Model Training

Can Karakus® Rahul Huilgol' Fei Wu! Anirudh Subramanian! Cade Daniel!
Derya Cavdar! Teng Xu! Haohan Chen! Arash Rahnama! Luis Quintela®

1 Amazon

Presenter: Shiwei Zhang

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
@00 0000 [e]e]e} 000000000 [e]e] 0000 000

Prelude

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
oeo 0000 000 000000000 [e]e] 0000 000

Amazon SageMaker

aWS Contac Support~ English» My Account> Signin Create an AWS Account
~—"7

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Ever > Q

x®

Amazon SageMaker
Machine learning for every data scientist and . D:Staag:v':::;:u
developer

Create a Free Accoul Get Started with SageMaker

Amazon SageMaker Overview Video (4:47)

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
ooe 0000 000 000000000 [e]e] 0000 000

Content

Design Principle and Overview
Pipeline Parallelism
Tensor Parallelism

Experiments

vV v v v Vv

Summary

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 000 000000000 oo 0000 000

Design Principle and Framework Overview

Design Principle and Framework Overview
0@00

Motivation

Existing systems are not flexible enough to handle:

P architectures that do not consist of a single transformer encoder or large
non-transformer architectures,

architectures that do not consist of a consecutive sequence of identical layers,
a single large component in an otherwise small model,
architectures that make extensive use of module/parameter re-use,

scripts with conditional execution flows,

vvyvyVvVvyy

and non-conventional execution patterns such as mixture-of-experts layers.

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments
000 0000 000 000000000 [e]e] 0000

Design Principles

» Do not abstract away the training step
» Preserve framework features and characteristics

» Do not limit to specific architectures

Summary
000

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 [e]e]e]) 000 000000000 [e]e] 0000 000

Framework Overview

g |

Model
The library features pipeline, tensor, and [t] . - l;)
data parallelism, controlled by the three PP CRO0P
groups, [
iy :
QUF TP_GROUP RDP_GROUP

The entry function (training loop) is P_GRO\
wrapped in a smp.step decorator to P
activate this library. 4

6 ”

| =

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 @00 000000000 [e]e] 0000 000

Pipeline Parallelism

Tensor Parallelism Experiments Summary

Pipeline Parallelism Partitioning Algorithm
oo 0000 000

Prelude Design Principle and Framework Overview
(o] le} 000000000

[e]e]e} 0000

Background

In pipeline parallelism, the model is partitioned into stages. Each stage is put on
one device. Multiple microbatches are running concurrently in a pipeline.

Gpul FO F1 F2 F3 BO B1
© GPUO FO F1 F2 F3

Time

. GPUL FO F1 B1) B2 F3 B3

BO
| GPUD FO . F1 . BO F2 Bl F3 = B2 - B3

aepdn

Time

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 ooe 000000000 [e]e] 0000 000

Tree Structure and Message Passing Workflow

mhb=(mb=1

smp.step [0

The model is viewed as a hierarchy of
modules based on PyTorch class
definition. req.

resp.

Each pipeline stage runs an execution
server, which is a Python thread that @ @ @
listens for incoming execution requests. resp.

req.

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 000 000000000 [e]e] 0000 000

Partitioning Algorithm

Partitioning Algorithm
0@0000000

Problem Definition

For a tree T = (V,), we define Q(n) as the set of children of a node n € V. A
cost ¢(n) is associated with each node n representing the memory and
computation cost of the subtree.

The goal of the algorithm is to find the device assignment d(n) for each node n.

Virtual devices: in this part, “device” stands for the unit of pipeline groups,
which may contain multiple GPUs.

Module Nodes: A Node in the tree V' may contain multiple modules if they share
the same parameter. In this case, the edges are arbitrarily pruned to keep it a
tree.

Partitioning Algorithm
000000000

Main loop

Algorithm 1 Tree partitioning algorithm

Input: Set P(r) of devices, tree 7 of nodes with root 7.
while there are more nodes do
Get next node n in breadth-first order of 7
d(n) < P(n)[0]
if |P(n)| > 1 then
{P(C)}CEQ(n) < Partition(P(n),Q(n))
else
P(c) + {P(n)[0]} forall c € Q(n)
end if
end while

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 000 000@00000

Cost function

C(m) = aw(m) + (1 — a)(m)
where C'(m) is the unnormalized cost, w(m) is the memory cost, and v(m) is the

computation cost of module m.

The cost of a Module Node n is defined recursively as the sum of the costs of the set
of modules M (n) it contains and the costs of its children Q(n)

= > Cm)+ > Cp)
meM(n) peEQ(n)

The final cost is normalized by the cost of the root r

e
= ow)

Partitioning Algorithm
0000e0000

Segmentation

To assign the set of devices P(n) to each child node in Q(n), we first partition
the sequence of (Q(n) into [segments such that

min w(P) = min max c(p)
peES

This can be solved with dynamic programming using the recursion:
(ki) = minmax{e(k = 1,7), Y (o)}
q€Q(n.5)

where ¢(k, 1) is the partition cost P achieved in partitioning the first i elements
of Q(n) into k partitions, and Q(n, j) represents the sub-sequence of QQ(n) from
element j onwards.

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000008000

Device Allocation

Algorithm 3 D’Hondt method

Input: Set P(n) of devices, and costs ¢; > 0, for 0 <
1< —1.
Initialize s:=1, ¢; :== ¢;, P, = {} for0 <i </ — 1.
for p € P(n) do
Py, < P, U {p} where k := arg max; g;
qk s?ll-cl
s+ s+1
end for

return {P;}for0 <i</¢-1

Partitioning Algorithm
000000800

Recursive partitioning

At the end of D'Hondt allocation, there are three possible scenarios for each
segment:
» No device is assigned to it. This segment will be put on the same device as
the parent node.
» One device is assigned to the segment. The segment and all its subtrees will
be placed on the device.
» Multiple devices are assigned to the segment. If this segment has only one
node, all devices are assigned to it (it will be revisited in Algorithm 1).
Otherwise, the segment is further divided into smaller segments recursively.

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 000 000000080 [e]e] 0000 000

Example Partitioning

Auto-partition decision over T5-11B with o = 1.0

model
Lo/ o]
language model 1m head
0.995 / [0] word_embedding
/ \O;DD.—)/ [0]
enbedding encoder decoder
Be-5 [0] 0.457 / [0] 0.537 / [1]

~
' / x
layers[0:6] || layers[6:12]||1ayers[12:18] [|layers[18:24]||layers [0:6] || layers[6:12]||layers[12:18]||layers [18:24]
0.114 / [0] 0.114 / [5] 0.114 / [3] 0.114 / [7] 0.134 / [1] 0.134 / [4] 0.134 / [2] 0.134 / [6]

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 000 00000000e [e]e] 0000 000

Another Example Partitioning

Auto-partition decision over T5-11B with v = 0.2

model
L0/ [o]
language model 1m head
0.991 / [0] word_embedding
/ \O;DD'—)/ (0]
embedding encoder decoder
0.004 [0] 0.393 / (1] 0.593 / [0]

‘// ‘\~
layers[0:8] || layers[8:16](|layers[16:24] || layers[0:4] ||layers[4:8] || layers[9:14]|[layers[14:19]||layers[19:24]
0.131 / [1] 0.131 / [4] 0.131 / [6] 0.098 / [0] 0.123 / [7] 0.123 / 2] 0.123 / [3] 0.123 / [5]

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 000 000000000 e0 0000 000

Tensor Parallelism

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 000 000000000 oe 0000 000

Tensor Parallelism

SageMaker achieves tensor parallelism by providing drop-in replacement layers like
DistributedLiner, DistributedEmbedding, DistributedTransformer, etc.

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 000 000000000 [e]e] @000 000

Experiments

Experiments
0®00

10-billion parameter RoBERTa and BERT

» Hardware: 16 nodes, each equipped with 8 A100.
» Models: RoBERTa/BERT, 10B parameters
» Baselines: DeepSpeed with ZeRO stage 2

Library Configuration | Batch | Throughput

smp RoBERTa 1024 385 seq/s
DeepSpeed RoBERTa 1024 276 seq/s
smp BERT 8192 327 seqls

DeepSpeed BERT 8192 373 seq/s

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments
000 0000 000 000000000 [e]e] [e]e] e}

175-billion parameter GPT-3

A GPT-3 model with 175-billion parameters and a sequence length of 2048 is
trained on 120 nodes for a total of 960 A100 GPUs. The pipeline parallelism
degree is 6 and tensor parallelism degree is 8.

Summary
000

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 000 000000000 [e]e] oooe 000

Neural collaborative filtering

» Hardware: 4 nodes, each equipped - §
. Score (Pype——1RNINE___ 7y) rarget
with 8 A100. o N

NeuMF Layer
» Model: NCF %
MLP Layer X

» Baseline: Pure tensor-parallelism i

lement-wisé
Product

Setting | Dataset Throughput
smp 1 107656 samples/s | MF User vector| | MLP ser Vector | MF Item Vector | | MLP Item Vector |

Baseline 1 43078 samples/s
STp 2 69208 samples/s LofoTo KM ofo]...] Loofo[ol o] -]
2

User (u) Item (i)
36723 samples/s

Baseline

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary
000 0000 [e]e]e} 000000000 (e]e] 0000 @00

Summary

Summary
oeo

Conclusion

Strength
» Tree structure and message passing workflow.

» Automatic pipeline parallelism based on dynamic programming and D'Hondt
method.

Limitation
» The proposed methods do not solve the problems listed in motivation.

» The experiment results are not very good.

» There is no analysis (optimality, complexity, etc.) for the proposed methods.

Experiments Summary

Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism
) C 00 ocoe

Takeaways

» In addition to the linearly-connected layers and DAG structures, we can also
view a model as a tree.

» The message-passing architecture may provide new challenges and
opportunities.

Thank you!

	Prelude
	Design Principle and Framework Overview
	Pipeline Parallelism
	Partitioning Algorithm
	Tensor Parallelism
	Experiments
	Summary
	Appendix

