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Design Principle and Framework Overview
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Motivation

Existing systems are not flexible enough to handle:

▶ architectures that do not consist of a single transformer encoder or large
non-transformer architectures,

▶ architectures that do not consist of a consecutive sequence of identical layers,

▶ a single large component in an otherwise small model,

▶ architectures that make extensive use of module/parameter re-use,

▶ scripts with conditional execution flows,

▶ and non-conventional execution patterns such as mixture-of-experts layers.
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Design Principles

▶ Do not abstract away the training step

▶ Preserve framework features and characteristics

▶ Do not limit to specific architectures
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Framework Overview

The library features pipeline, tensor, and
data parallelism, controlled by the three
groups.

The entry function (training loop) is
wrapped in a smp.step decorator to
activate this library.

Amazon SageMaker Model Parallelism: A General and Flexible Framework for Large Model Training

and cross-device communication, both within and across
instances. The library also manages data parallelism inter-
nally, so the use of a separate data parallelism API is not
required.

Detailed user guide for the library is available in (Amazon,
2020b), and the detailed API documentation is available
in (Amazon, 2020a), with supplemental documentation in
Appendix I.

3.2.2 Process and ranking basics

The library relies on MPI for process management, and
maintains a one-to-one mapping between CPU processes
and GPU devices, i.e., each process manages exactly
one GPU. For instance, if training is launched over 4
p4d.24xlarge instances (with 8 GPUs per instance), an
MPI job with 32 processes is launched. We follow the MPI
terminology and use rank to indicate the global index of
the process across the cluster.

The library features three different parallelization strategies;
namely, pipeline, tensor, and data parallelism. The entire
set of devices in a cluster can be allocated in a variety of
ways across these three strategies, which can be controlled
through the placement strategy option of the library
(see (Amazon, 2020a)). Regardless of the specific place-
ment, one can define data-parallel group (DP GROUP),
pipeline-parallel group (PP GROUP), and tensor-parallel
group (TP GROUP) as the sets of processes that collec-
tively perform data parallelism, pipeline parallelism, and
tensor parallelism among each other, respectively. In addi-
tion, a reduced-data-parallel group (RDP GROUP) is the
set of processes that hold the exact same model replica
(see Figure 1). Unlike existing implementations, the library
treats TP GROUP as a subset of DP GROUP, instead of an
independent dimension, which will be explained in more de-
tail in §5. We will use tp rank, pp rank, and dp rank
to refer to the index of a process within its TP GROUP,
PP GROUP, and DP GROUP, respectively. See Figure 1
for an illustration of these concepts.

3.2.3 User interface

The core API consists of three main changes to the user
script (specific features might require additional APIs,
which will be discussed where relevant, see (Amazon,
2020a) for detailed API documentation, and Appendix I
for supplemental documentation). In what follows, we as-
sume that the library is imported through

import smdistributed.modelparallel.torch \
as smp

To use the library, the user must

1. Initialize the internal state of the library and launch

Figure 1. Illustration of process groups over 8 devices, with tensor-
parallelism degree 2, pipeline-parallelism degree 2, and data-
parallelism degree 4. At the top, an example model with 4 lay-
ers. On the bottom, the 4-layer model is distributed across 4
devices using both pipeline parallelism and tensor parallelism
(tensor parallelism is used for the middle two layers). Note that
TP GROUP is a subset of DP GROUP, since tensor parallelism
is performed across data-parallel ranks. Reduced-data-parallel
group (RDP GROUP) consists of devices that share identical
model replicas.

the backend threads by calling smp.init() at the
beginning of the script.

2. Wrap the model (nn.Module object) with
smp.DistributedModel wrapper, and optimizer
with smp.DistributedOptimizer wrapper.

3. Wrap the forward and backward pass logic (but not
the optimizer step) with @smp.step decorator. For
example, the training step might look like
@smp.step
def train_step(inputs, targets):

pred = model(inputs)
loss = loss_obj(pred, targets)
model.backward(loss)
return loss, pred

Note that the typical loss.backward() call is re-
placed with model.backward(loss) so that the li-
brary can control the backward pass. If pipeline paral-
lelism is enabled, smp.step-decorated function spec-
ifies the computations that must be executed in a
pipelined manner. Hence, the computations placed
inside the function are executed once per microbatch
when train step function is called. The tensors
that are returned from the smp.step-decorated func-
tion automatically get wrapped in StepOutput ob-
ject, which encapsulates different versions of the tensor
across all microbatches. After the call to train step,
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Pipeline Parallelism
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Background

In pipeline parallelism, the model is partitioned into stages. Each stage is put on
one device. Multiple microbatches are running concurrently in a pipeline.

Amazon SageMaker Model Parallelism: A General and Flexible Framework for Large Model Training

A MODEL PARALLELISM BASICS

Model parallelism is a type of distributed training pattern
where a single copy of the model is partitioned across mul-
tiple accelerators which operate in parallel. In contrast to
data parallelism, which is useful at all model scales, model
parallelism becomes more and more useful at larger model
scales, and becomes unavoidable beyond a certain scale,
absent some other powerful memory-saving technique, such
as tensor sharding across data-parallel ranks, or CPU of-
floading2.

There are two main types of model parallelism: (1) pipeline
parallelism, and (2) tensor parallelism. SageMaker model
parallelism library supports both types of model parallelism.

Figure 7. Example simple pipeline schedule over 2 GPUs

Figure 8. Example interleaved pipeline schedule over 2 GPUs

A.1 Pipeline parallelism

Pipeline parallelism partitions the set of layers or modules,
or, depending on the granularity of the partition, operations
across the set of devices, such that each operation remains
fully within one device. The pipeline-parallel partition is
often represented as a sequence of stages in the model, e.g.,
the first N/2 layers of the model is stored in one device, and
the next N/2 is stored on another etc.

Note that since the partition typically consists of a set of
sequential stages that depend on each other, such partitions
do not immediately achieve parallelization. To improve
parallelization, pipelined execution is performed, where the
incoming batch of data is split into microbatches, which are
simply subsets of a single mini-batch. Each microbatch is
sequentially fed into the model, and follows a tightly or-
chestrated pipeline schedule that prescribes which stage of
computation (forward or backward) for which microbatch
each device should perform for each time slot. The pipeline
schedule is typically designed so that the amount of paral-
lelization (simultaneous computation) between the devices
is maximized (see Figures 7 and 8). Works such as GPipe,

2Often such techniques will be used in combination with model
parallelism

PipeDream, Megatron, and DeepSpeed implement differ-
ent variants of pipeline parallelism in limited ways (See
Section 2 for a brief comparison of these works).

A.2 Tensor parallelism

In contrast to pipeline parallelism, tensor parallelism con-
sists of splitting specific operations and implementing them
in a distributed way. For instance, pipeline parallelism
would leave each matrix multiplication operation intact,
while tensor parallelism partitions the matrices to imple-
ment distributed matrix multiplication. Unlike pipeline par-
allelism, tensor parallelism results in immediately paral-
lelized computations.

Note that the specific way in which an operation is dis-
tributed in tensor parallelism depends on the mathematical
function implemented by the operation (e.g., distributed
matrix multiplication is implemented differently from dis-
tributed embedding look-up), and thus tensor parallelism
must be implemented in an operator-specific basis.

Works such as Megatron (Shoeybi et al., 2019), Mesh-
TensorFlow, and GSPMD implement variants of tensor par-
allelism.

B PIPELINE PARALLELISM MESSAGE
STRUCTURE

The messages exchanged between pp ranks contain the
following information:

• Whether this is a request or response, and if it is a
response, an identifier for the corresponding request

• If request, an identifier for the module the execution is
requested for

• If a request for a nn.Sequential module, the subset
of (consecutive) modules the execution is requested for

• If a request for module execution, whether forward or
backward execution is requested

• If a request for module execution, the input tensors
for the module (along with any encapsulating Python
structure such as lists that contain the tensors) or the
gradients flowing into the module

• If a response, module outputs (along with any encapsu-
lating Python structure such as lists that contain the
tensors) or the gradients flowing out of the module

• Microbatch information
• The pp rankmaking the request
• The location of the module within the module graph
• Whether the requester is currently in a autocast con-

text
• Whether the requester is currently in a
no grad/enable grad context

• Whether activation checkpointing is enabled for the
current module
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Tree Structure and Message Passing Workflow

The model is viewed as a hierarchy of
modules based on PyTorch class
definition.

Each pipeline stage runs an execution
server, which is a Python thread that
listens for incoming execution requests.

Amazon SageMaker Model Parallelism: A General and Flexible Framework for Large Model Training

these tensors can be combined into a single value using
the API exposed by StepOutput class (StepOutput
API available in (Amazon, 2020a)). For instance, the
loss can be averaged, and per-microbatch predictions
combined across microbatches through
# loss is returned by train_step
loss_avg = loss.reduce_mean()
# predictions is returned by train_step
pred = predictions.concat()

After training, to combine model partitions into a
single artifact, one can use state dict() API,
which is overriden in smp.DistributedModel and
smp.DistributedOptimizer so that the parti-
tioned model and optimizer states are allgathered
and combined in the CPU to produce as a single
state dictionary that represents the entire model. It
is also possible to get only the local states using
local state dict() API, which is useful for check-
pointing.

4 PIPELINE PARALLELISM
ARCHITECTURE

4.1 Overview

Amazon SageMaker model parallelism library views the
model as a directed graph of nodes, where each node (with
the exception of the root) represents a PyTorch nn.Module

object, and there is an edge from node A to node B
only if module B is a submodule of module A (note Py-
Torch models are defined as a hierarchy of nn.Module
objects). Note that the graph is a tree if there are no mod-
ules that are submodules of multiple other distinct modules.
Module-submodule relationships are derived purely from
PyTorch module creations ( init calls), and is indepen-
dent of how the module is actually used within the forward
method of the parent module. The root of the graph cor-
responds to the smp.step-decorated function, which is
treated as the parent node of the the top-level model object
(smp.DistributedModel).

The model partition for pipeline parallelism takes place
at the level of nn.Module, i.e., each partition is a map-
ping from the set of nn.Modules of the model to the set
of pp ranks. An example module graph and partition is
provided in Figure 2. Note that there is no assumption on
any particular computational graph structure in this view of
the model, which is why the pipeline parallelism framework
is generic. Further, unlike other implementations of pipeline
parallelism, the library does not view the model as a flat
sequence of stages (for example, a sequence of layers where
certain blocks of layers are assigned to specific devices),
but as a hierarchy of modules based on the existing hierar-
chy in model definition. Refer to Appendix D for example
partitions over this module hierarchy.

The auto-partitioning algorithm, which assigns modules to
pp ranks, will be discussed in §4.5; for now, we assume
the module assignment is given. Every pp rank is respon-
sible for (forward and backward) execution of the modules
assigned to itself, and stores the necessary parameters for
those modules. During forward or backward execution of a
module, whenever control flow reaches a submodule that is
not assigned to the current pp rank, an execution request
is sent to the pp rank that stores that submodule, which
in turn sends its own requests to other pp ranks if needed.
When the execution of the requested module finishes, the
result (the outputs of the module for forward pass, or the
gradients returned from the backward pass of the module)
is returned to the pp rank that made the original request.

Figure 2. The execution flow over an example model with a top-
level module A, and submodules B–F . The square brackets rep-
resent the pp rank the module is assigned to as a result of par-
titioning. Whenever the control flow reaches a submodule that is
not stored locally, an execution request is sent to the pp rank
that owns the submodule, which responds to the requester with
the output of the module. smp.step function is always treated
as the top module and is placed on pp rank 0. For each micro-
batch, pp rank 0 enqueues a new execution request for itself,
which marks the start of forward pass. At the start of the back-
ward pass for each microbatch (model.backward call), another
local request is enqueued at pp rank 0, this time for backward
execution.

Each pp rank runs an execution server, which is a Python
thread that monitors incoming execution requests from other
pp ranks, and assigns the execution tasks to local worker
threads (see §4.2 for details). During each execution of an
smp.step-decorated function, instead of following regular
Pythonic control flow, every pp rank launches the mod-
ule server and waits for incoming requests. pp rank 0
additionally enqueues a new execution request to itself, cor-
responding to the execution of the top-level smp.step node,
which consists of the contents of the smp.step function.
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Partitioning Algorithm
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Problem Definition

For a tree T = (V , E), we define Q(n) as the set of children of a node n ∈ V . A
cost c(n) is associated with each node n representing the memory and
computation cost of the subtree.

The goal of the algorithm is to find the device assignment d(n) for each node n.

Virtual devices: in this part, “device” stands for the unit of pipeline groups,
which may contain multiple GPUs.

Module Nodes: A Node in the tree V may contain multiple modules if they share
the same parameter. In this case, the edges are arbitrarily pruned to keep it a
tree.
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Main loop
Amazon SageMaker Model Parallelism: A General and Flexible Framework for Large Model Training

Algorithm 1 Tree partitioning algorithm
Input: Set P (r) of devices, tree T of nodes with root r.
while there are more nodes do

Get next node n in breadth-first order of T
d(n)← P (n)[0]
if |P (n)| > 1 then
{P (c)}c∈Q(n) ← Partition(P (n), Q(n))

else
P (c)← {P (n)[0]} for all c ∈ Q(n)

end if
end while

parallelism degree specified by user), and operates by
traversing the nodes of T in breadth-first order, and par-
titioning the set P (n) for the current node n among its
children Q(n), so that P (n) =

⋃
c∈Q(n) P (c).

Intuitively, P (n) for a node n represents the set of devices
that will be responsible for executing the part of the model
represented by the subtree under n. At every iteration, the
algorithm proceeds by partitioning P (n) among the chil-
dren of n, i.e., deciding which subset of P (n) should be
responsible for the execution of each child subtree. For the
purposes of the partition algorithm, P (n) refers to “virtual”
devices, in that it pertains to the partition indices within
each PP GROUP, and not necessarily physical device in-
dices. The algorithm terminates when |P (n)| = 1 for all the
remaining nodes n in the breadth-first traversal, in which
case all the remaining children of node n inherit P (n). The
current node n always gets assigned the smallest partition
index in P (n), denoted by P (n)[0].

The crux of the algorithm is the choice of how to parti-
tion P (n) among the children of node n (i.e., Partition
call). The goal here is to find a partition so that the number
of devices assigned to the subtree represented by child p
is approximately proportional to the cost of that subtree,
c(p), while biasing the algorithm towards assigning the
same partition to modules that are adjacent to each other
in execution order. The details of how this is done, includ-
ing a pseudo-code for Partition operation (Algorithm 2),
is given in Appendix C. The main idea behind this algo-
rithm is to use dynamic programming to split the children
Q(n) into segments that are as equal-cost as possible, and
then allocating the elements of P (n) across these segments
using D’Hondt method (Gallagher, 1991) (although other
proportional allocation methods can be substituted), and re-
cursively re-applying these steps to the segments with more
than one device assigned. The intuition behind this is that
each child node effectively gets assigned a subset of P (n)
that is approximately proportional to the cost of its subtree,
so that the per-device cost is balanced. Example partitioning
decisions arrived by this algorithm are given in Appendix D.

5 TENSOR PARALLELISM ARCHITECTURE

5.1 Motivation

Tensor parallelism involves splitting operations or layers
themselves to execute in parallel across multiple devices.
Unlike pipeline parallelism, tensor parallelism needs to be
implemented on a per-operation, or per-layer basis, since the
distribution mechanism depends on the mathematical func-
tion being implemented. For this reason, it is not possible to
have a fully model-architecture-agnostic tensor parallelism
implementation. However, it is still possible to create a
general framework that can efficiently support the full diver-
sity of scenarios that require tensor parallelism (including
uniformly large models, models with only one large compo-
nent, or mixture-of-experts models), and is modular enough
to be easily extensible to new custom operations, which are
unique advantages of the library compared to other tensor
parallelism solutions.

To handle these scenarios efficiently, SageMaker model
parallelism library performs tensor parallelism across data-
parallel ranks, in contrast to other implementations. To see
why this matters, consider an example scenario where an
otherwise medium-sized model has a huge embedding table
that must be distributed across N GPUs. Clearly, using the
N − 1 additional GPUs only for storing the partitions of
embedding table is highly inefficient, so these GPUs should
contribute to the computation as well. Feeding the same
input to all N − 1 tensor-parallel devices, as Megatron-LM
does, would not improve the efficiency in this case, since
apart from the embedding, the computation done by the
N − 1 devices would be redundant. It is also impractical to
split all the operations in the model since some operations in
the model might be difficult to distribute (or unsupported), or
might introduce unnecessary cross-device communication
for small operations. Performing tensor parallelism across
data-parallel ranks effectively solves this problem, by having
the GPUs compute on different data samples for the parts
of the model that are not distributed, while the relevant
parts of the data samples are exchanged between tensor-
parallel ranks for the distributed components. We describe
the mechanics of tensor parallelism in more detail in the
next subsection.

5.2 Overview

As with pipeline parallelism, the fundamental computational
unit for tensor parallelism is nn.Module. In essence, tensor
parallelism consists in traversing the model, and replacing
specific submodules of the model with their distributed im-
plementations during smp.DistributedModel call. The
distributed implementation has the same input-output rela-
tionship as the original module. A module gets replaced if
and only if (1) a distributed implementation of the module
is available, (2) the user has enabled tensor parallelism for
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Cost function

C̄(m) = αw(m) + (1− α)ψ(m)

where C̄(m) is the unnormalized cost, w(m) is the memory cost, and ψ(m) is the
computation cost of module m.

The cost of a Module Node n is defined recursively as the sum of the costs of the set
of modules M(n) it contains and the costs of its children Q(n)

C(n) =
∑

m∈M(n)

C̄(m) +
∑

p∈Q(n)

C(p)

The final cost is normalized by the cost of the root r

c(n) =
C(n)

C(r)
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Segmentation

To assign the set of devices P (n) to each child node in Q(n), we first partition
the sequence of Q(n) into l segments such that

min
P

ω(P) = min
P

max
S∈P

∑

p∈S

c(p)

This can be solved with dynamic programming using the recursion:

c(k, i) = min
j≤i

max{c(k − 1, j),
∑

q∈Q(n,j)

c(q)}

where c(k, i) is the partition cost P achieved in partitioning the first i elements
of Q(n) into k partitions, and Q(n, j) represents the sub-sequence of Q(n) from
element j onwards.
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Device Allocation
Amazon SageMaker Model Parallelism: A General and Flexible Framework for Large Model Training

Algorithm 3 D’Hondt method
Input: Set P (n) of devices, and costs ci > 0, for 0 ≤
i ≤ `− 1.
Initialize s:=1, qi := ci, Pi = {} for 0 ≤ i ≤ `− 1.
for p ∈ P (n) do
Pk ← Pk ∪ {p} where k := arg maxi qi
qk ← qk

s+1
s← s+ 1

end for
return {Pi} for 0 ≤ i ≤ `− 1

In this section, we describe how we partition the set P (n)
of devices among the children Q(n) of node n, so that

P (n) =
⋃

c∈Q(n)

P (c).

Note that the sets P (c) may not be disjoint across c ∈ Q(n),
and it is possible that |P (c)| > 1, in which case P (c) will
further be partitioned among the children of c.

To achieve this, we first partition the sequence of Q(n)
(where the order is dictated by the execution order obtained
during tracing) into ` segments such that maximum normal-
ized cost in any segment is minimized:

min
P

ω(P) := min
P

max
S∈P

∑

p∈S
c(p), (2)

where P is a partitioning of the sequence Q(n) into ` sub-
sequences S with consecutive elements. In other words,
we are seeking an optimally balanced `-way partitioning
of Q(n) into sub-arrays with consecutive elements. This
can be solved through dynamic programming, using the
recursion

c(k, i) = min
j≤i

max



c(k − 1, j),

∑

q∈Q(n,j)

c(q)



 , (3)

for 0 ≤ i < |Q(n)|, 2 ≤ k ≤ `, where c(k, i) is defined as
the partition cost ω(P) achieved in partitioning the first i
elements of Q(n) into k partitions, and Q(n, j) represents
the sub-sequence of Q(n) from element j onwards. To
see how recursion (3) solves (2), note that minP ω(P) =
c(|Q(n)| , `), and c(1, i) =

∑
j≤i c(j). In practice, we

choose ` to be node-dependent: ` = |P (n)|.
Once the ` segments are formed, we allocate the virtual
devices P (n) across the ` segments, such that the number of
devices assigned to segment S is approximately proportional
to the total cost

∑
p∈S c(p) of segment i. Any proportional

allocation algorithm can be used to achieve this, but we
implement D’Hondt method3 (Gallagher, 1991) in practice

3It can be shown that D’Hondt method minimizes the largest
device-count-to-segment-cost ratio among all segments. The

to perform this allocation since it tends to favor larger-cost
segments (the motivation for this will become clear shortly).
D’Hondt algorithm is outlined in Algorithm 3.

At the end of D’Hondt allocation, there are three possible
scenarios for each segment:

1. No device is assigned to the segment. In this case, all
ModuleNodes in the segment get assigned the same
device as the parent node4.

2. One device is assigned to the segment. In this case, all
ModuleNodes in the segment get assigned this device.

3. Multiple devices are assigned to the segment. In this
case, if the segment has one node, we keep the device
assignment as is (this node will be revisited later in
BFS). Otherwise, we recursively apply the dynamic
programming and D’Hondt allocation steps to this seg-
ment, until each sub-segment reduces to one of the
above two scenarios. Note that this process is guaran-
teed to terminate as long as all ModuleNode costs are
strictly positive.

To understand the intuition behind the algorithm, it is useful
to consider how it would behave in some specific scenarios.
Note that Algorithm 2 must be versatile enough to handle
diverse node cost distributions. For instance, the children
nodes Q(n) might consist of one or two nodes that contain
most of the total cost, along with a large number of tiny-cost
nodes. On the other extreme, the children might consist of a
large number of nodes for which the cost is almost-equally
distributed. In the former scenario, the segmentation step
will combine all the small nodes into a single segment, and
the large-cost nodes will be placed in their dedicated seg-
ments. If the combined cost of the combined nodes is small
enough, D’Hondt method will allocate all the devices to the
nodes that account for most of the cost, while the small-
cost nodes will simply be placed on the same device as the
parent, which is desirable. In the latter scenario, segmen-
tation will create approximately-equal-cost segments, and
D’Hondt method will allocate one device for each segment
(recall that we choose the number of segments to be equal to
the number of devices for the current node), balancing the
per-device load. In practice, we observe that the presented
algorithm can handle a broad range of scenarios across dif-
ferent model architectures and implementations, and result
in a relatively balanced partition, although manual tuning
might somtimes improve the balance of the memory load

method is used in the allocation of parliament seats proportional
to the votes in many representative democracies around the world.
Note the similarity of the parliament seat allocation problem with
the virtual device allocation proportional to segment costs.

4This can happen when the cost of the segment is too small, in
which case assigning the same virtual device as the parent avoids
an additional round of communication. D’Hondt method biases
towards this scenario by slightly favoring the larger-cost segments
in its allocation.
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Recursive partitioning

At the end of D’Hondt allocation, there are three possible scenarios for each
segment:

▶ No device is assigned to it. This segment will be put on the same device as
the parent node.

▶ One device is assigned to the segment. The segment and all its subtrees will
be placed on the device.

▶ Multiple devices are assigned to the segment. If this segment has only one
node, all devices are assigned to it (it will be revisited in Algorithm 1).
Otherwise, the segment is further divided into smaller segments recursively.
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Example Partitioning

Auto-partition decision over T5-11B with α = 1.0
Amazon SageMaker Model Parallelism: A General and Flexible Framework for Large Model Training

Figure 9. Auto-partition decision over T5-11B with α = 1.0. layers[i:j] represent encoder/decoder layers between i (inclusive) and
j (exclusive). The numbers on the second row of each box represent the normalized cost of the corresponding ModuleNode, and the
partition index the node is assigned to, respectively. Note that since lm head and word embedding share weights, they are assigned
to the same ModuleNode, and are thus assigned to the same partition. Per-partition total normalized costs vary between 0.114 and 0.134
(note that perfect balancing would assign 0.125 to each partition).

(See (Amazon, 2020a) for the manual partition API).

D EXAMPLE PARTITION DECISIONS

Figures 9 and 10 illustrate partition decisions output by
the auto-partitioning algorithm over a T5 model with 11
billion parameters, with memory-cost weights α = 1.0 and
α = 0.2, respectively, and a pipeline parallelism degree of
8.

In either case, the partitioning algorithm balances the nor-
malized costs across 8 partitions. In the case of α = 1.0,
note that the costs of encoder and decoder blocks are closer,
and so the auto-partitioning algorithm assigns four devices
to each. In contrast, for α = 0.2, the decoder block has a
relatively higher cost, and hence gets assigned five devices,
compared to three for the encoder. The additional cost of
the decoder reflects the fact that it performs the additional
cross-attention operation.

Further note that in Figure 10, partition 0 gets assigned
fewer decoder layers, balancing the fact that it holds other
layers such as embedding and lm head.

E TENSOR PARALLELISM API
E.1 smp.nn module

All distributed module implementations inherit from
smp.nn.DistributedModule. smp.nn module contains
all the built-in implementations of distributed modules,
which are as follows:

• smp.nn.DistributedLinear

• smp.nn.DistributedEmbedding

• smp.nn.DistributedLayerNorm

• smp.nn.DistributedAttentionLayer

• smp.nn.DistributedTransformerOutputLayer

• smp.nn.DistributedTransformerLayer

• smp.nn.DistributedTransformer

• smp.nn.DistributedTransformerLMHead

These distributed implementations are built in a generic man-
ner, supporting a range of use cases across different model
architectures through initialization arguments, such as self-
vs. cross-attention for encoder-decoder architectures, causal
vs. non-causal masks for language modeling (e.g., BERT vs.
GPT-2), and pre- vs. post-residual layer normalization in
transformer layers. More details on the API documentation
for these distributed modules can be found in Appendix I.3.

E.2 Enabling tensor parallelism

Tensor parallelism can be used by either using the distributed
modules listed in the previous section directly in model con-
struction phase, or the library can automatically replace the
modules with their distributed implementations whenever
possible, as requested by the user. Such automated replace-
ment can be useful, for instance, when the user do not have
direct access to the model construction code (such as when
importing a HuggingFace transformer implementation), or
many sub-modules in the model require distribution.

For modules whose distribution is natively supported in the
library, such automatic replacement can be enabled by

with smp.tensor_parallelism(enabled=True):
module = MyModule()

which marks MyModule, as well as all of its submodules, for
tensor parallelism. Later, when smp.DistributedModel

wrapper is called, all modules marked for tensor parallelism
are replaced with their distributed implementation, as long
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Another Example Partitioning

Auto-partition decision over T5-11B with α = 0.2
Amazon SageMaker Model Parallelism: A General and Flexible Framework for Large Model Training

Figure 10. Auto-partition decision over T5-11B with α = 0.2. See Figure 9 for an explanation of the representation. The encoder gets
assigned three devices while the decoder is assigned five, since decoder involves more computation, and setting α = 0.2 results in
weighing the computational component higher in computing the normalized cost. Per-partition total normalized costs vary between 0.107
and 0.131 (note that perfect balancing would assign 0.125 to each partition).

as they satisfy the conditions (1)–(4) listed in Section 5.2.
Alternatively, tensor parallelism can be enabled for a specific
module using the smp.set tensor parallelism API,
for example,

smp.set_tensor_parallelism(model.embedding,
enabled=True)

Modules with built-in tensor parallelism support include
nn.Linear and nn.Embedding from native PyTorch,
as well as the relevant submodules of HuggingFace
transformers implementations for BERT, RoBERTa, and
GPT-2.

E.3 Registering a distributed module for tensor
parallelism

For custom module implementations without built-in sup-
port, the user can register the module class with a built-
in DistributedModule using @smp.tp register deco-
rator or smp.tp register with module API, which in-
forms the library that the module implements the same func-
tion as the corresponding DistributedModule. During
registration, the user may specify hooks which translate the
init and forward arguments and return values from

the original module to the distributed one:

@smp.tp_register(
smp.nn.DistributedAttentionLayer,
init_hook, fwd_hook)

class CustomAttentionLayer(nn.Module):
...

or

smp.tp_register_with_module(
CustomAttentionLayer,
smp.nn.DistributedAttentionLayer)

Once registered, if tensor parallelism is enabled for the
original module, the library replaces the module with its reg-
istered distributed counterpart, and matches its hyperparam-
eters and method signature using the hooks defined during
registration. Note that such registration is not needed if the
user directly imports and uses the DistributedModule

during model construction. The details for these APIs are
available in Appendix I.4.

E.4 Creating custom distributed modules

For modules whose distributed implementation is not avail-
able among built-in modules listed in Section I.3, the user
can also implement custom distributed modules by sub-
classing smp.nn.DistributedModule, and registering
them with the existing modules. The library API exposes
a number of primitives aiding with distributed weight ini-
tialization and collective communication, which internally
handle the interactions with other features such as data
parallelism and pipeline parallelism, so that new custom
distributed modules can be implemented easily. These prim-
itives are described in detail in Appendix I.6.

F DISTRIBUTED TRANSFORMER
IMPLEMENTATIONS

In this section we present the distribution mechanisms
for the self-attention and MLP blocks of a transformer.
The library features two separate distribution mechanisms
for optimizing memory footprint, and throughput, respec-
tively. The former avoids replicating activations within
the TP GROUP, while the latter minimizes communica-
tion across tp ranks, and is effectively equivalent to
the distribution method of Megatron-LM. The distribution
method can be chosen by setting "optimize": "speed"

or "optimize": "memory" in the configuration while
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Tensor Parallelism
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Tensor Parallelism

SageMaker achieves tensor parallelism by providing drop-in replacement layers like
DistributedLiner, DistributedEmbedding, DistributedTransformer, etc.

AmazonSageMakerModelParallelism:AGeneralandFlexibleFrameworkforLargeModelTrainingFigure6.Tensor-paralleldistributionofanaffinelayer(nn.Linear)overtwotensor-parallelranks.Thedashedblockimplementstheaffinefunctionf(x)=Wx+b,wheretheweightisdistributedcolumn-wise:W=[W1W2](biasonlyresidesintprank0).Eachinputalsogetspartitionedrow-wisex=[x>1x>2]>,sothatthesummationofthetwolocalaffinefunctions:(W1x1+b)+(W2x2)=Wx+bisidenticaltothenon-distributedcase.Notethateachtensor-parallelrankhasalocalbatchsizeof2,consistingofdifferentdatasamples.Toimplementthisforalldatasamples,tprankislicesitsinputx(i)row-wise,andsendsthejthslicex(i)jtotprankj(implementedviaall-to-allcollective).Next,tprankjappliesitslocalfunctiontoallslicescollectedfromitsTPGROUP:˜yj:=[y(1)jy(2)j]=Wj[x(1)jx(2)j](andaddsbiasifj=0).Finally,areduce-scatteroperationsumsyjacrosstpranksj,andslicesitsothattprankiendsupwithy(i):=∑Tj=1y(i)j,whereTistensorparallelismdegree.themodule,and(3)noancestorofthemoduleisalreadyreplacedwithitsdistributedversion1,and(4)itdoesnotshareparameterswithanothermodule.Whentensorparallelismisperformedoverdata-parallelranks,theparameters,gradients,andoptimizerstatesforthemodulesthatsatisfy(1)–(4)abovearepartitionedacrossthetpranks.Fortherestofthemodules,thetensor-paralleldevicesoperateinaregulardata-parallelmanner.Toexecutethedistributedmodule,adevicefirstcollectsthenecessarytensorslicesofalldatasamplesacrosspeerdevicesinthesametensorparallelismgroup.Thelocalfragmentofthemoduleisthenexecutedontheslicesofallthesedatasam-ples,followedbyanotherroundofsynchronizationwhichbothcombinesthepartsoftheoutputforeachdatasample,andalsoreturnsthecombineddatasamplestotheirrespec-tiveGPUswherethedatasamplefirstoriginatedfrom,sothattheoutputofthedistributedmoduleineverytprankisthesameasthenon-distributedscenario.Weillustratethisideaoveranexamplewithnn.Linear,depictedinFigure6.Thelibrarycomeswithbuilt-indistributedimplementa-tionsforcommonlyusednativePyTorchmodules,suchasnn.Linearandnn.Embedding,butalsohasgenericimplementationsforcommonlyusedbuildingblocksindeeplearning,suchastheattentionlayer,layernormal-1Ingeneral,distributingahigher-levelmoduleismoreefficientthandistributedmultiplelower-levelmodules,sincesomeofthecollectivesinvolvedinlower-leveldistributioncanbeavoidedwhendistributingaparentmodule.ization,andtransformerencoder/decoderblocks.Alltensor-parallelmoduleimplementationsarechildclassesofsmp.nn.DistributedModuleclass,andpartofsmp.nnmodule(seeAppendixI.3forAPIsforalldistributedmod-uleimplementations).Notethatinordertoreplaceamodulewithadistributedimplementationduringsmp.DistributedModelcall,thelibraryneedstobeabletomatchamodulewithitscorre-spondingDistributedModule.FornativePyTorchmod-ules,thisisachievedusinganinternallook-uptablemain-tainedinthelibrary.Thislook-uptablealsoincludesentriesforpopularHuggingFacemodelimplementations(GPT-2,RoBERTa,andBERT),whichmapsspecificsubmodulesoftheseimplementationstointernaldistributedtransformerimplementationsofthelibrary.Forcustommodulesthatarenotpartofthelook-uptable,smp.tpregisterAPIcanbeusedtoregisterspecificDistributedModuleswithagivenmoduleintheuserscript(SeeAppendicesEandI.4).Ifthereisnobuilt-indistributedimplementationforthetar-getmodule,itisalsopossibletoimplementacustomonebysub-classingsmp.nn.DistributedModule,andusingthecommunicationandweightinitializationprimitivespro-videdthelibraryAPI,whichensurecompatibilitywiththerestofthefeatures(seeAppendixI.6fordetails).5.3Built-indistributedmodulesInthissectionwebrieflydescribethespecificdistribu-tionmechanismsimplementedforsomeofthebuilt-inDistributedModules.DistributedLinear:ThedistributionmechanismforthelinearlayerwasdescribedinFigure6.DistributedEmbedding:nn.Embeddinglayersaredis-tributedacrosstheembeddingdimension.Theinputindicesareallgatheredacrossthetensor-parallelranks,followedbyalocalembeddinglook-up,whichatithtprankgivestheithsliceoftheembeddingvectorforeachindex.Theresultsarethenscatteredacrosstpranksbythebatchdimension,andcombinedbytheembeddingdimension,usinganall-to-allcollective,whichgivesthelocalembeddingoutputsinalltpranks.DistributedTransformer:ConsistsofasequenceofDistributedTransformerLayers,whichinturnconsistofDistributedAttentionLayerandDistributedTransformerOutputLayers.Thelibraryofferstwoseparatedistributionimplementationsforthelattertwolayers,whichcanbecontrolledbysettingtheconfigurationparameter"optimize"to"speed"or"memory".The"speed"optiondistributestheattentionandoutputlayersinthesamewayasdonebyMegatron,while"memory"optioninsteadshardsalltheinterme-diateactivationsacrossthetpranks,includinglayer



Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary

Experiments



Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary

10-billion parameter RoBERTa and BERT

▶ Hardware: 16 nodes, each equipped with 8 A100.

▶ Models: RoBERTa/BERT, 10B parameters

▶ Baselines: DeepSpeed with ZeRO stage 2

Amazon SageMaker Model Parallelism: A General and Flexible Framework for Large Model Training

Table 1. Configurations A and B for RoBERTa training. The defi-
nitions for model hyperparameters are the same as in (Brown et al.,
2020)

Model dmodel nlayers nheads dhead
RoBERTa 4096 48 32 128

BERT 2560 127 40 64

normalization. See Appendix F for details.

6 COMMUNICATION BACKEND

The library features a dedicated communication backend for
pipeline parallelism, which manages intra-node and cross-
node device-to-device (D2D) communication without rely-
ing on the popular NCCL library. This is because NCCL
necessitates tight synchronization between nodes, requir-
ing collectives (or point-to-point send/recv operations) be
called in the same order in all participating terminals. This is
difficult to achieve in the full breadth of cases that the library
supports, e.g., conditional control flows where a communi-
cation primitive may not be called at a terminal depending
on some condition, or cases where two different transmitters
simultaneously attempt to send a tensor to the same rank,
where a global order of transmissions would require tight
synchronization mechanism to be enforced globally.

This motivates a more flexible communication backend,
which do not have a priori expectations about the order
of communications required, and serves communication
requests made by the framework in an on-demand ba-
sis. Furthermore, for good performance, it needs to lever-
age NVLinks for intra-node transmissions, and GPUDi-
rect RDMA technology for inter-node transmissions. Ap-
pendix G presents the architecture for the D2D subsystem
that satisfies these requirements.

7 EXPERIMENTS

7.1 10-billion parameter RoBERTa and BERT

We train larger variants of RoBERTa and BERT under two
different model configurations shown in Table 1, both to-
taling 10 billion parameters. These experiments are run on
a cluster of 16 p4d.24xlarge nodes, each equipped with
8 NVIDIA A100 GPUs. We use a sequence length of 512.
For SageMaker, we use a tensor parallelism degree of 4,
pipeline parallelism degree of 1, and with activation check-
pointing and optimizer state sharding features enabled. For
DeepSpeed, we use ZeRO optimization stage 2 with com-
munication overlap and activation (gradient) checkpointing.

The results in Table 2 show that for the configuration A,
which is a wider architecture, smp is 39% faster than Deep-
Speed on 16 nodes. For the deeper configuration B, the
two libraries have comparable performance, although Deep-
Speed is 15% faster.

Table 2. Throughput of smp and DeepSpeed (RoBERTa and
BERT).

Library Configuration Batch Throughput
smp RoBERTa 1024 385 seq/s

DeepSpeed RoBERTa 1024 276 seq/s
smp BERT 8192 327 seq/s

DeepSpeed BERT 8192 373 seq/s

7.2 175-billion parameter GPT-3

We train GPT-3 under the 175-billion parameter config-
uration described in (Brown et al., 2020), with a se-
quence length of 2048. For this experiment, we use 120
p4d.24xlarge nodes for a total of 960 NVIDIA A100
GPUs. The library was configured with pipeline parallelism
degree 6 (with fast mode enabled), tensor parallelism degree
8, and with activation offloading, activation checkpointing,
and optimizer state sharding enabled. To use tensor par-
allelism with pipeline parallelism, we feed the same data
sample to each TP GROUP (see Appendix I.1, section on
prescaled batch), so that true data parallelism degree be-
comes 20. We use a global batch size of 2560, and 64
microbatches. Under this configuration, the library achieves
a throughput of 26.5 sequences per second.

7.3 Neural collaborative filtering with large
embedding table

We train a neural collaborative filtering model (He et al.,
2017) with 318133 users, 1792 items, MLP latent dimen-
sion of 512, and GMF latent dimension of 64. We use the
library with pipeline parallelism degree of 1, and tensor
parallelism degree of 16, over four p3.16xlarge instances
(each with 8 NVIDIA V100 GPUs), and only distribute the
four embedding tables of the model, with the rest of the
model being executed in a data-parallel manner. We use a
per-GPU batch size of 256, for a total batch size of 8192.

As a baseline, we run the same model while feeding the same
batch of data to all tensor-parallel ranks, similar to Megatron
(note that this removes the need for the initial allgather in
DistributedEmbedding, as well as turning the all-to-all
into an allgather, reducing the amount of communication
required). To maintain the same global batch size, we use
a per-GPU batch size of 4096. Table 3 show the resulting
throughput for this model under these configurations for two
different internal Amazon datasets.

Table 3. Throughput for smp and the baseline over two datasets.
Setting Dataset Throughput
smp 1 107656 samples/s

Baseline 1 43078 samples/s
smp 2 69298 samples/s

Baseline 2 36723 samples/s



Prelude Design Principle and Framework Overview Pipeline Parallelism Partitioning Algorithm Tensor Parallelism Experiments Summary

175-billion parameter GPT-3

A GPT-3 model with 175-billion parameters and a sequence length of 2048 is
trained on 120 nodes for a total of 960 A100 GPUs. The pipeline parallelism
degree is 6 and tensor parallelism degree is 8.
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Neural collaborative filtering

▶ Hardware: 4 nodes, each equipped
with 8 A100.

▶ Model: NCF

▶ Baseline: Pure tensor-parallelism

Amazon SageMaker Model Parallelism: A General and Flexible Framework for Large Model Training

Table 1. Configurations A and B for RoBERTa training. The defi-
nitions for model hyperparameters are the same as in (Brown et al.,
2020)

Model dmodel nlayers nheads dhead
RoBERTa 4096 48 32 128

BERT 2560 127 40 64

normalization. See Appendix F for details.

6 COMMUNICATION BACKEND

The library features a dedicated communication backend for
pipeline parallelism, which manages intra-node and cross-
node device-to-device (D2D) communication without rely-
ing on the popular NCCL library. This is because NCCL
necessitates tight synchronization between nodes, requir-
ing collectives (or point-to-point send/recv operations) be
called in the same order in all participating terminals. This is
difficult to achieve in the full breadth of cases that the library
supports, e.g., conditional control flows where a communi-
cation primitive may not be called at a terminal depending
on some condition, or cases where two different transmitters
simultaneously attempt to send a tensor to the same rank,
where a global order of transmissions would require tight
synchronization mechanism to be enforced globally.

This motivates a more flexible communication backend,
which do not have a priori expectations about the order
of communications required, and serves communication
requests made by the framework in an on-demand ba-
sis. Furthermore, for good performance, it needs to lever-
age NVLinks for intra-node transmissions, and GPUDi-
rect RDMA technology for inter-node transmissions. Ap-
pendix G presents the architecture for the D2D subsystem
that satisfies these requirements.

7 EXPERIMENTS

7.1 10-billion parameter RoBERTa and BERT

We train larger variants of RoBERTa and BERT under two
different model configurations shown in Table 1, both to-
taling 10 billion parameters. These experiments are run on
a cluster of 16 p4d.24xlarge nodes, each equipped with
8 NVIDIA A100 GPUs. We use a sequence length of 512.
For SageMaker, we use a tensor parallelism degree of 4,
pipeline parallelism degree of 1, and with activation check-
pointing and optimizer state sharding features enabled. For
DeepSpeed, we use ZeRO optimization stage 2 with com-
munication overlap and activation (gradient) checkpointing.

The results in Table 2 show that for the configuration A,
which is a wider architecture, smp is 39% faster than Deep-
Speed on 16 nodes. For the deeper configuration B, the
two libraries have comparable performance, although Deep-
Speed is 15% faster.

Table 2. Throughput of smp and DeepSpeed (RoBERTa and
BERT).

Library Configuration Batch Throughput
smp RoBERTa 1024 385 seq/s

DeepSpeed RoBERTa 1024 276 seq/s
smp BERT 8192 327 seq/s

DeepSpeed BERT 8192 373 seq/s

7.2 175-billion parameter GPT-3

We train GPT-3 under the 175-billion parameter config-
uration described in (Brown et al., 2020), with a se-
quence length of 2048. For this experiment, we use 120
p4d.24xlarge nodes for a total of 960 NVIDIA A100
GPUs. The library was configured with pipeline parallelism
degree 6 (with fast mode enabled), tensor parallelism degree
8, and with activation offloading, activation checkpointing,
and optimizer state sharding enabled. To use tensor par-
allelism with pipeline parallelism, we feed the same data
sample to each TP GROUP (see Appendix I.1, section on
prescaled batch), so that true data parallelism degree be-
comes 20. We use a global batch size of 2560, and 64
microbatches. Under this configuration, the library achieves
a throughput of 26.5 sequences per second.

7.3 Neural collaborative filtering with large
embedding table

We train a neural collaborative filtering model (He et al.,
2017) with 318133 users, 1792 items, MLP latent dimen-
sion of 512, and GMF latent dimension of 64. We use the
library with pipeline parallelism degree of 1, and tensor
parallelism degree of 16, over four p3.16xlarge instances
(each with 8 NVIDIA V100 GPUs), and only distribute the
four embedding tables of the model, with the rest of the
model being executed in a data-parallel manner. We use a
per-GPU batch size of 256, for a total batch size of 8192.

As a baseline, we run the same model while feeding the same
batch of data to all tensor-parallel ranks, similar to Megatron
(note that this removes the need for the initial allgather in
DistributedEmbedding, as well as turning the all-to-all
into an allgather, reducing the amount of communication
required). To maintain the same global batch size, we use
a per-GPU batch size of 4096. Table 3 show the resulting
throughput for this model under these configurations for two
different internal Amazon datasets.

Table 3. Throughput for smp and the baseline over two datasets.
Setting Dataset Throughput
smp 1 107656 samples/s

Baseline 1 43078 samples/s
smp 2 69298 samples/s

Baseline 2 36723 samples/s
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Conclusion

Strength

▶ Tree structure and message passing workflow.

▶ Automatic pipeline parallelism based on dynamic programming and D’Hondt
method.

Limitation

▶ The proposed methods do not solve the problems listed in motivation.

▶ The experiment results are not very good.

▶ There is no analysis (optimality, complexity, etc.) for the proposed methods.
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Takeaways

▶ In addition to the linearly-connected layers and DAG structures, we can also
view a model as a tree.

▶ The message-passing architecture may provide new challenges and
opportunities.



Thank you!
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