Content
o]

Introduction Design Overview Synthesis Algorithm Experiments Summary
0000 00000 000000 00000000 000

Synthesizing Optimal Parallelism Placement and
Reduction Strategies on Hierarchical Systems For Deep
Learning

Ningning Xie! Tamara Norman? Dominik Grewe? Dimitrios Vytiniotis?
LUniversity of Cambridge 2DeepMind

Presenter: Shiwei Zhang

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
[] 0000 00000 000000 00000000 000

Content

Introduction

Design Overview

>

>

» Synthesis Algorithm
» Experiments

>

Summary

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] @000 00000 000000 00000000 000

Introduction

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] 0000 00000 000000 00000000 000

Parallelism and Communication
» Recent studies combine data parallelism and model parallelism (parameter
sharding) to maximize training throughput.
» How we map parallelism over devices decides the communication overhead.

» Each form of parallelism is referred to as a parallelism axis.

32 data batches

| 000 3E-EE
100 00 =S58
! 00 OE EE-EE
= OO-0OE [| g ||
(a) Combining (b) Reduction (c) Reduction

parameter sharding along the axis of along the axis of
and data parallelism parameter sharding data parallelism

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] [e]e] o] 00000 000000 00000000 000

Parallelism and Communication

(510) ST)
(0] [1feo] [ofeo] [|-{oo]
o1 o]
2] [7ifsz] [Fefca] Foefor]
] | o] | fes] [os]
2 212 2
(@) [(rack, 1), (server, 2), (CPU, 2), (GPU, 4)]) [} i1 31] © [i T2 2] @ [i 21 §]

Figure 2: (a): A system. (b), (c), (d): Possible (non-exhaustive) parallelism placements for (a) under data parallelism of size
4 and 4 parameter shards. For clarity, we show only the 16 GPUs but omit interconnects. Device marker n/m indicates data
batch n and parameter shard m.

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] [efe]e]) 00000 000000 00000000 000

P?: a tool for parallelism placement and placement-aware
synthesis of reduction strategies

» Parallelism placement synthesis: mapping parallelism axes to the system
hierarchy.

» Reduction strategy synthesis: synthesize a wide variety of reduction
strategies to implement reductions using common collective operations.

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] 0000 00000 000000 00000000 000

Design Overview

Design Overview
0@000

Parallelism Placement

Objective: Deciding which parts of a partitioned program will execute on which
parts of a system.

Challenge: Synthesizing all arbitrary device mappings can be extremely
expensive.

Solution: Partition parallelism axes over the system hierarchy to generate
topology-aware parallelism placements.

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] 0000 00e00 000000 00000000 000

Parallelism Matrix

o
8l
B

(510) ST)
o] [1430 [-fa] [-4 v
o1 o]
2] [7ifsz] [Fefca] Foefor]
] | o] | fes] [os]
1221 1212 1122
(@) [(rack, 1), (server, 2), (CPU, 2), (GPU, 4)]) [1 11 4] © [1 12 2] @ [1 21 2]

Figure 2: (a): A system. (b), (c), (d): Possible (non-exhaustive) parallelism placements for (a) under data parallelism of size
4 and 4 parameter shards. For clarity, we show only the 16 GPUs but omit interconnects. Device marker n/m indicates data
batch n and parameter shard m.

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
[e] 0000 000e0 000000 00000000 000

Reduction Strategy

P? synthesizes topology-aware reduction strategies using common collective
operations.

» (a) is commonly used but it does not utilize the topology of the system.
» (b) and (c) are strategies synthesized by P?. Their first steps are within SO0.

» (c) has fewer data to transfer over S1/S2 than (b), but it has more steps.

£33

COO wne ===

(a) AllReduce (b) AllReduce-AllReduce (C) Reduce-AllReduce-Broadcast

Design Overview
0000e

Formalism of Collective Operations

Synthesizing all sequences of collective operations is not necessary. Some
sequences of the operations lead to semantically invalid states that can never
reach the final desired state.

P? formalize common collective operations using Hoare triples. A Hoare triple

{G1}C{G>} means when the precondition {G;} is met, executing the command C
establishes the postcondition {G}.

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] 0000 00000 000000 00000000 000

Synthesis Algorithm

Content Introduction Design Overview Synthesis Algorithm Experiments
o] 0000 00000 0e0000 00000000

Parallelism Placement

The Parallelism placement is defined by the parallelism matrix.

H = [hg -+ hy] is the system hierarchy (e.g., [1 2 2 4]),
P = [po -+ pm] is the parallelism axes (e.g., [4 4]),
then a parallelism matrix is

subject to:
m

[zi=h i=0n

Tm,0 Tm,1 " Tm,n| i=0
n

Hzi’j = Di, 1= 07 ., (2)

=0

.’130,0 .1‘011 -TO,n

Summary
000

Content Introduction Design Overview Synthesis Algorithm Experiments
o] 0000 00000 00e000 00000000

Collective Operations Notations and States

Notations We first define the notations.

d device

s € Bkxk device state
g = d;:s; state context
C := AllReduce | ReduceScatter

| AllGather | Reduce | Broadcast

The state of a device is a k x k boolean matrix where s[i|[j] = 1 means that

device j has contributed its original ¢th chunk to the reduction result.

[% reduced from device 0 and 1
3 data chunks Bl reduced from device 1 and 2

M - reduced from device 2 and 3

Summary
000

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] 0000 00000 000800 00000000 000

Collective Operations Semantics
{G1}C{G2}| (Reduction: from the pre-condition state Gy, C yields to the post-condition state Go) before after

R-ALLREDUCE | =
Vij, s;.rows = sj.rows Vijk, i #j = s;[k| ® s;[k] s =Ws;

{4 5:) AlReduce {d; : 5 } k-

R-REDUCESCATTER ~
Vij, s;.rows =s;.rows Vijk, i # j = s;[k] ® s;[k] s=us; s, =scatter(s,i)i]

3

{d; : s; } ReduceScatter { d; : s} } " e
R-ALLGATHER -
Vij, i #j = si.rows® s;j.rows Vij, |s;.rows| = |s;.rows| s =Ws; nan

{d; :s; }AllGather {d; : s}

R-REDUCE
Vij, $;.TOWS = 5;.rows Vijk, i #j = cl[k] @ s;[k] s =Ws;

{d; : 5; }Reduce {dy : 5,d; : {} }

-
elE

R-BROADCAST

® disjoint rows non-empty rows) .)
i <)

W addition |-| length Vi, 5i < 50 i, 8i < 50 E—‘—‘!

scatter(s,) scatters non-empty rows in s over devices i {d; - s: } Broadcast { d; : 5o } E_Dj‘

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] 0000 00000 0000e0 00000000 000

Reduction Program
A reduction strategy is represented as a program, a list of reduction instructions.

program € [reduction]

reduction € slice x form x C

slice = e

form InsideGroup | Parallel(e) | Master(e)

slice form groups(slice, form)
CPU InsideGroup {Ao, A1, Az, A3}, {Bo, B1, B2, B3},
{Co, C1, C2, C3}, {Do, D1, D2, D3} 52.0

Parallel(server) {Ao, Bo}, {A1,B1}, {A2, B2}, {As3, B3}
{Co, Do}, {C1, D1}, {C2, D2}, {Cs, D3}

Parallel(rack) {Ao, Bo, Co, Do}, {A1,B1,C1,D1}, m m
{A2, B2, C3, Do}, {As, B3, C3, D3}
Master (rack) {Ao, Bo, Co, Do} ° m B m
server InsideGroup {Ao, A1, A2, A3, Bg, B1, B2, B3}, 3 H 3 E

v
=
=]

{Co, C1, C2, C3,Dg, D1, D2, D3}
Parallel(rack) {Ao, Co}, {A1, C1}, {A2, Co}, {As, C3}
{Bo,Do}, {B1,D1}, {B2, D2}, {B3, Ds}
rack InsideGroup {Ao, A1, A2, Az, Bo, By, B2, B3,
Co, C1, C2, C3, Do, D1, D2, D3}

Content Introduction Design Overview Synthesis Algorithm
o] 0000 00000 00000e

Program Synthesis for Reduction Programs

The goal is to find a program L that

supposing d; reduces with devices j.

P? uses a method called syntax-guided program synthesis for this purpose.

Summary
000

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] 0000 00000 000000 90000000 000

Experiments

Content Introduction Design Overview
o] 0000 00000

Experimental Setup

» 2 and 4 nodes on Google Cloud
Platform.

» 2 system topologies.

Synthesis Algorithm Experiments Summary

000000 O@000000 [e]e]e}

E%] DCN @
T 11 [1T 1T T T T T

I
0 1 2 3 12 13 14 15 6 17 18 19 28 29 30 31
|

| I I L [1 | I |

(a) 2 nodes, each with 16 A100 GPUs sharing one NVSwitch and
one NIC, and all NICs are connected in a data center

NVLink NVLink

(b) 2 nodes, each with 8 V100 GPUs forming a ring via NVLink
and connected via PCle switches. Each node consists of two CPUs
(each owning 4 GPUs) with one NIC to the DCN. A shared NIC
connecting the two CPUs is a modeling simplification — in reality
cross-domain communication is through shared memory.

Content Introduction Design Overview
o]

0000 00000

Result 1

The performance of AllReduce differs significantly among parallelism

matrices, up to 448.5x.

4 nodes, each with 16 A100

Synthesis Algorithm
000000

Al 2 32] 12] 48]] 012 017 874 9.89
A2 [[21] [216]]37.16 3694 481 34l
Bl 4 16] 14| 44]] 015 020 17.70 19.03
B2 22| [28]] 2877 19.81 839 499
B3 H4 1] [116]]56.13 89.70 0.8 0.22
Cl 8 8] 18] 42]] 017 021 33.92 41.06
c2 2 4] [2 4]] 1652 9.18 1568 943
C3 42| [18]] 3405 4123 0.17 021
4 nodes, each with 8 V100

El 8 4] 18] 41]] 028 039 21.74 3042
E2 2 4] [2 2]] 1425 1548 1098 7.34
E3 42| [14]] 1484 1990 296 043

Experiments
00®00000

Summary
000

Experiments
000@0000

Result 2

The pruning techniques are effective for the synthesizer to achieve fast
synthesis time.

In the experiments, the program size limit is set to 5 for the synthesizer, which
turns out to be sufficient to generate interesting reduction patterns. With this
setup, the longest synthesis time is under 2 seconds (for up to 235 programs).
Increasing the size limit makes the synthesis slightly slower, but, for most cases,
does not generate new programs.

Experiments
0000@000

Result 3

If the reduction axes can be put within one node, then a single step
AllReduce inside that node is the most performant reduction due to fast
local bandwidth.

Content Introduction
o 0000

Result 4

Design Overview

00000

Synthesis Algorithm

000000

Experiments
00000e00

Summary
000

Synthesized programs can mitigate the impact of parallelism placement.

2 nodes, each with 16 A100

FI Ring 8 4] 0.03 14747 1822 0.17 0.17 Ix

F2] [[2 4][1 4 16.84 9.19 1.83x
4 nodes, each with 16 A100

Gl Tree 416] 0.04 10/53 4] 44]] 0.20 0.17 L17x
G2 ([4 1][1 16]] 89.70 56.13 1.60x
Hl Ring 162 2] 0.97 25/235 116]21] 21 4.79 4.63 1.03x
H2 (2 8][2 1][1 2] 491 3.10 1.58x
I Ring 2216 0.93 29/235 21]21] 116 4.82 2.99 1.61x
2 ’ ([12][21][2 8] 5.28 4.77 L11x
J1 Tree 64] 1.16 5147 416 5.75 4.74 1.21x
4 nodes, each with 8 V100

KI Ring 82 2] 0.24 17/188 242112 4.80 2.35 2.04x
K2 ’ (18 F 11 [2 1” 4.40 4.40 1x

LI Ring 32] 0.06 11/47 438 4.83 345 1.4x

Experiments
00000000

Result 5

For reduction across nodes, a topology-aware reduction program tends
to outperform a single step AllReduce, with speedup on average 1.28x,
upto 2.04x.

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] 0000 00000 000000 O000000e 000

Optimal strategies found by P?

For ResNet-50 model, P? found the optimal strategy (ii) that achieves 15%
overall training time speedup compared to the baselin aiku).

ne (H
HiEA BCBTEEAR Sk =ce diGd
dilih CETE R (i EERE e

(i) Reduce-AllReduce-Broadcast (ii) ReduceScatter-AllReduce-AllGather

I H 'JI ']
FIFFFE

Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] 0000 00000 000000 00000000 @00

Summary

Summary
oeo

Conclusion

Strength

» Jointly optimize the parallelism placement and reduction strategy for
hierarchical topologies.

» Formalize the collective semantics to automatically search for valid
programs.

Limitation

» Only strictly symmetric and hierarchical topologies are considered.
» The optimal reduction strategy is simple and has already been studied.

» Why not take a step further and also consider the parallelism strategy?

Summary
ooe

Takeaways

» Operation synthesis
» Communication synthesis: transform a single collective operation into
multiple smaller operations. (P?, BlueConnect, SCCL, etc.)
» Computation synthesis: transform a computation operation into multiple
smaller operations. (TASO, DietCode, etc.)
» Parallelism strategy synthesis: transform a computation operation into a
series of communication and computation operations.

» Define the state of the system and treat operations as directed links (with
costs) that connect states.

Thank you!

	Content
	Introduction
	Design Overview
	Synthesis Algorithm
	Experiments
	Summary
	Appendix

