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Introduction
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Parallelism and Communication
» Recent studies combine data parallelism and model parallelism (parameter
sharding) to maximize training throughput.
» How we map parallelism over devices decides the communication overhead.

» Each form of parallelism is referred to as a parallelism axis.
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Parallelism and Communication
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Figure 2: (a): A system. (b), (c), (d): Possible (non-exhaustive) parallelism placements for (a) under data parallelism of size
4 and 4 parameter shards. For clarity, we show only the 16 GPUs but omit interconnects. Device marker n/m indicates data
batch n and parameter shard m.
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P?: a tool for parallelism placement and placement-aware
synthesis of reduction strategies

» Parallelism placement synthesis: mapping parallelism axes to the system
hierarchy.

» Reduction strategy synthesis: synthesize a wide variety of reduction
strategies to implement reductions using common collective operations.
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Design Overview



Design Overview
0@000

Parallelism Placement

Objective: Deciding which parts of a partitioned program will execute on which
parts of a system.

Challenge: Synthesizing all arbitrary device mappings can be extremely
expensive.

Solution: Partition parallelism axes over the system hierarchy to generate
topology-aware parallelism placements.



Content Introduction Design Overview Synthesis Algorithm Experiments Summary
o] 0000 00e00 000000 00000000 000

Parallelism Matrix
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Figure 2: (a): A system. (b), (c), (d): Possible (non-exhaustive) parallelism placements for (a) under data parallelism of size
4 and 4 parameter shards. For clarity, we show only the 16 GPUs but omit interconnects. Device marker n/m indicates data
batch n and parameter shard m.
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Reduction Strategy

P? synthesizes topology-aware reduction strategies using common collective
operations.

» (a) is commonly used but it does not utilize the topology of the system.
» (b) and (c) are strategies synthesized by P?. Their first steps are within SO0.

» (c) has fewer data to transfer over S1/S2 than (b), but it has more steps.
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(a) AllReduce (b) AllReduce-AllReduce (C) Reduce-AllReduce-Broadcast
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Formalism of Collective Operations

Synthesizing all sequences of collective operations is not necessary. Some
sequences of the operations lead to semantically invalid states that can never
reach the final desired state.

P? formalize common collective operations using Hoare triples. A Hoare triple

{G1}C{G>} means when the precondition {G;} is met, executing the command C
establishes the postcondition {G}.
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Synthesis Algorithm
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Parallelism Placement

The Parallelism placement is defined by the parallelism matrix.

H = [hg -+ hy] is the system hierarchy (e.g., [1 2 2 4]),
P = [po -+ pm] is the parallelism axes (e.g., [4 4]),
then a parallelism matrix is

subject to:
m

[zi=h i=0n

Tm,0 Tm,1 " Tm,n| i=0
n

Hzi’j = Di, 1= 07 ., (2)

=0

.’130,0 .1‘011 -TO,n

Summary
000
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Collective Operations Notations and States

Notations We first define the notations.

d device

s € Bkxk device state
g = d;:s; state context
C := AllReduce | ReduceScatter

| AllGather | Reduce | Broadcast

The state of a device is a k x k boolean matrix where s[i|[j] = 1 means that

device j has contributed its original ¢th chunk to the reduction result.

[ % reduced from device 0 and 1
3 data chunks Bl reduced from device 1 and 2

M - reduced from device 2 and 3

Summary
000
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Collective Operations Semantics
{G1}C{G2}| (Reduction: from the pre-condition state Gy, C yields to the post-condition state Go ) before after

R-ALLREDUCE | =
Vij, s;.rows = sj.rows  Vijk, i #j = s;[k| ® s;[k] s =Ws;

{4  5: ) AlReduce {d; : 5 } k-

R-REDUCESCATTER ~
Vij, s;.rows =s;.rows  Vijk, i # j = s;[k] ® s;[k] s=us; s, =scatter(s,i)i]

3

{d; : s; } ReduceScatter { d; : s} } " e
R-ALLGATHER -
Vij, i #j = si.rows® s;j.rows  Vij, |s;.rows| = |s;.rows| s =Ws; nan

{d; :s; }AllGather {d; : s}

R-REDUCE
Vij, $;.TOWS = 5;.rows Vijk, i #j = cl[k] @ s;[k] s =Ws;

{d; : 5; }Reduce {dy : 5,d; : {} }

-
elE

R-BROADCAST

® disjoint rows  non-empty rows ) . )
i < )

W addition |-|  length Vi, 5i < 50 i, 8i < 50 E—‘—‘!

scatter(s, ) scatters non-empty rows in s over devices i {d; - s: } Broadcast { d; : 5o } E_Dj‘
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Reduction Program
A reduction strategy is represented as a program, a list of reduction instructions.

program €  [reduction]

reduction €  slice x form x C

slice = e

form InsideGroup | Parallel(e) | Master(e)

slice  form groups(slice, form)
CPU  InsideGroup {Ao, A1, Az, A3}, {Bo, B1, B2, B3},
{Co, C1, C2, C3}, {Do, D1, D2, D3} 52.0

Parallel(server)  {Ao, Bo}, {A1,B1}, {A2, B2}, {As3, B3}
{Co, Do}, {C1, D1}, {C2, D2}, {Cs, D3}

Parallel(rack) {Ao, Bo, Co, Do}, {A1,B1,C1,D1}, m m
{A2, B2, C3, Do}, {As, B3, C3, D3}
Master (rack) {Ao, Bo, Co, Do} ° m B m
server  InsideGroup {Ao, A1, A2, A3, Bg, B1, B2, B3}, 3 H 3 E

v
=
=]

{Co, C1, C2, C3,Dg, D1, D2, D3}
Parallel(rack) {Ao, Co}, {A1, C1}, {A2, Co}, {As, C3}
{Bo,Do}, {B1,D1}, {B2, D2}, {B3, Ds}
rack InsideGroup {Ao, A1, A2, Az, Bo, By, B2, B3,
Co, C1, C2, C3, Do, D1, D2, D3}
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Program Synthesis for Reduction Programs

The goal is to find a program L that

supposing d; reduces with devices j.

P? uses a method called syntax-guided program synthesis for this purpose.

Summary
000
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Experiments
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Experimental Setup

» 2 and 4 nodes on Google Cloud
Platform.

» 2 system topologies.

Synthesis Algorithm Experiments Summary
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(a) 2 nodes, each with 16 A100 GPUs sharing one NVSwitch and
one NIC, and all NICs are connected in a data center

NVLink NVLink

(b) 2 nodes, each with 8 V100 GPUs forming a ring via NVLink
and connected via PCle switches. Each node consists of two CPUs
(each owning 4 GPUs) with one NIC to the DCN. A shared NIC
connecting the two CPUs is a modeling simplification — in reality
cross-domain communication is through shared memory.
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Result 1

The performance of AllReduce differs significantly among parallelism

matrices, up to 448.5x.

4 nodes, each with 16 A100

Synthesis Algorithm
000000

Al 2 32] 12] 48]] 012 017 874 9.89
A2 [[21] [216]]37.16 3694 481 34l
Bl 4 16] 14| 44]] 015 020 17.70 19.03
B2 22| [28]] 2877 19.81 839 499
B3 H4 1] [116]]56.13 89.70 0.8  0.22
Cl 8 8] 18] 42]] 017 021 33.92 41.06
c2 2 4] [2 4]] 1652  9.18 1568 943
C3 42| [18]] 3405 4123 0.17 021
4 nodes, each with 8 V100

El 8 4] 18] 41]] 028 039 21.74 3042
E2 2 4] [2 2]] 1425 1548 1098  7.34
E3 42| [14]] 1484 1990 296 043

Experiments
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Result 2

The pruning techniques are effective for the synthesizer to achieve fast
synthesis time.

In the experiments, the program size limit is set to 5 for the synthesizer, which
turns out to be sufficient to generate interesting reduction patterns. With this
setup, the longest synthesis time is under 2 seconds (for up to 235 programs).
Increasing the size limit makes the synthesis slightly slower, but, for most cases,
does not generate new programs.
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Result 3

If the reduction axes can be put within one node, then a single step
AllReduce inside that node is the most performant reduction due to fast
local bandwidth.
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Result 4

Design Overview
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Synthesized programs can mitigate the impact of parallelism placement.

2 nodes, each with 16 A100

FI  Ring 8 4] 0.03 14747 1822 0.17 0.17 Ix

F2 ] [[2 4][1 4 16.84 9.19 1.83x
4 nodes, each with 16 A100

Gl Tree 416] 0.04 10/53 4] 44]] 0.20 0.17 L17x
G2 ([4 1][1 16]] 89.70 56.13 1.60x
Hl Ring 162 2] 0.97 25/235 116]21] 21 4.79 4.63 1.03x
H2 (2 8][2 1][1 2] 491 3.10 1.58x
I Ring 2216 0.93 29/235 21]21] 116 4.82 2.99 1.61x
2 ’ ([12][21][2 8] 5.28 4.77 L11x
J1 Tree 64] 1.16 5147 416 5.75 4.74 1.21x
4 nodes, each with 8 V100

KI  Ring 82 2] 0.24 17/188 242112 4.80 2.35 2.04x
K2 ’ (18 F 11 [2 1” 4.40 4.40 1x

LI Ring 32] 0.06 11/47 438 4.83 345 1.4x
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Result 5

For reduction across nodes, a topology-aware reduction program tends
to outperform a single step AllReduce, with speedup on average 1.28x,
upto 2.04x.
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Optimal strategies found by P?

For ResNet-50 model, P? found the optimal strategy (ii) that achieves 15%
overall training time speedup compared to the baselin aiku).
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(i) Reduce-AllReduce-Broadcast (ii) ReduceScatter-AllReduce-AllGather
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Conclusion

Strength

» Jointly optimize the parallelism placement and reduction strategy for
hierarchical topologies.

» Formalize the collective semantics to automatically search for valid
programs.

Limitation

» Only strictly symmetric and hierarchical topologies are considered.
» The optimal reduction strategy is simple and has already been studied.

» Why not take a step further and also consider the parallelism strategy?
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Takeaways

» Operation synthesis
» Communication synthesis: transform a single collective operation into
multiple smaller operations. (P?, BlueConnect, SCCL, etc.)
» Computation synthesis: transform a computation operation into multiple
smaller operations. (TASO, DietCode, etc.)
» Parallelism strategy synthesis: transform a computation operation into a
series of communication and computation operations.

» Define the state of the system and treat operations as directed links (with
costs) that connect states.



Thank you!
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