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Parallelism and Communication

▶ Recent studies combine data parallelism and model parallelism (parameter
sharding) to maximize training throughput.

▶ How we map parallelism over devices decides the communication overhead.

▶ Each form of parallelism is referred to as a parallelism axis.

SYNTHESIZING OPTIMAL PARALLELISM PLACEMENT AND REDUCTION
STRATEGIES ON HIERARCHICAL SYSTEMS FOR DEEP LEARNING

Ningning Xie 1 Tamara Norman 2 Dominik Grewe 2 Dimitrios Vytiniotis 2

ABSTRACT
We present a novel characterization of the mapping of multiple parallelism forms (e.g. data and model parallelism)
onto hierarchical accelerator systems that is hierarchy-aware and greatly reduces the space of software-to-hardware
mapping. We experimentally verify the substantial effect of these mappings on all-reduce performance (up to
448×). We offer a novel syntax-guided program synthesis framework that is able to decompose reductions over
one or more parallelism axes to sequences of collectives in a hierarchy- and mapping-aware way. For 69% of
parallelism placements and user requested reductions, our framework synthesizes programs that outperform the
default all-reduce implementation when evaluated on different GPU hierarchies (max 2.04×, average 1.27×). We
complement our synthesis tool with a simulator exceeding 90% top-10 accuracy, which therefore reduces the need
for massive evaluations of synthesis results to determine a small set of optimal programs and mappings.

1 INTRODUCTION

To facilitate efficient training of large-scale deep learning
models, numerous parallelism techniques have been suc-
cessfully employed. Common forms of parallelism include
data parallelism (Krizhevsky et al., 2012), where each de-
vice has a copy of the full model to process a portion of
the training data, and model parallelism (Dean et al., 2012),
which partitions a training model over available devices,
such as parameter sharding (Shoeybi et al., 2020). More
recent studies explore combinations of parallelism forms to
maximize training throughput (Jia et al., 2019; Narayanan
et al., 2021), where each form of parallelism is referred to
as a parallelism axis.

While the aforementioned forms of parallelism and their
combinations have greatly improved training throughput,
they may still incur significant communication cost. For
example, in the simplest form of data parallelism, parameter
gradients for each device must be reduced and replicated for
each iteration (Amodei et al., 2016), which is typically im-
plemented using the collective operation AllReduce (Thakur
et al., 2005). State-of-the-art parameter sharding for trans-
formers (Shoeybi et al., 2020) introduces sharded layers
where each involves several AllReduce operations. Com-
munication overhead is especially important for distributed
deep learning, as the more devices we have, computation
time reduces, and the communication cost becomes more
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(a) Combining
parameter sharding
and data parallelism

(b) Reduction
along the axis of
parameter sharding

(c) Reduction
along the axis of
data parallelism

Figure 1: Parallelism combination

prominent (Sergeev & Balso, 2018; Goyal et al., 2018).

To reduce communication overhead, one particular chal-
lenge posed by multiple parallelism axes is parallelism
placement. That is, how we map parallelism over devices
decides which devices communicate with each other along
each parallelism axis, and therefore decides the communi-
cation overhead. For example, Figure 1a presents a com-
bination of parameter sharding and data parallelism, for
which reduction along the axis of parameter sharding (or
data parallelism), referred to as the reduction axis, is shown
in Figure 1b (or Figure 1c, respectively). Now, suppose we
map each box in the figure to devices. In that case, different
mappings correspond to different reduction device groups,
which can have a significant impact on the communication
overhead depending on the network topology.

In this work, we present P 2, a tool for parallelism placement
and placement-aware synthesis of recduction strategies. In
particular, we offer the following contributions:
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(a) [(rack, 1), (server, 2), (CPU, 2), (GPU, 4)] (b)
[
1 2 2 1
1 1 1 4

]
(c)
[
1 2 1 2
1 1 2 2

]
(d)

[
1 1 2 2
1 2 1 2

]

Figure 2: (a): A system. (b), (c), (d): Possible (non-exhaustive) parallelism placements for (a) under data parallelism of size
4 and 4 parameter shards. For clarity, we show only the 16 GPUs but omit interconnects. Device marker n/m indicates data
batch n and parameter shard m.

• Parallelism placement synthesis: Given the parallelism
axes, the reduction axes, and a hierarchical system
topology, P 2 automatically synthesizes hierarchical
parallelism placements, where a parallelism placement
is modelled as a parallelism matrix mapping from par-
allelism axes to the system hierarchy (Section 3.1).
The notion of parallelism matrices greatly reduces the
space of parallelism placements contrary to a naive
implementation.

• Reduction strategy synthesis: For each parallelism
placement, P 2 utilizes the system hierarchy to fur-
ther synthesize a wide variety of reduction strategies
to implement reductions using common collective op-
erations. To achieve this, we introduce: (a) a formal
semantics for collectives (Section 3.2) based on Hoare
triples (Hoare, 1969); (2) a domain-specific language
(DSL) that can express possibly simultaneous reduc-
tions amongst groups of devices based on the system
hierarchy (Section 3.3); and (b) a lowering of our DSL
into sequences of collective operations. We use the
formal semantics to guide a syntax-directed synthesis
procedure on our DSL.

• Synthesis hierarchy: We show how the parallelism ma-
trix, which determines a candidate parallelism place-
ment, can be put to good use by the synthesizer to mas-
sively reduce the space of programs considered without
missing any semantically valid programs – provably
(Section 3.4).

• Evaluation: We evaluate the parallelism matrices and
reduction strategies synthesized by P 2 on two differ-
ent GPU systems available on Google Cloud Platform
(GCP) (Section 4). We use collective operations as
implemented by NVIDIA’s NCCL communication li-
brary (NVidia, 2021), exposed through XLA. The eval-
uation demonstrates (1) the impact of parallelism place-
ment: the performance of a single AllReduce across
different parallelism matrices differs up to 448.5×;
and (2) the effectiveness of custom reduction strate-
gies: for 69% of all parallelism mapping matrices, a

synthesized reduction outperforms AllReduce with up
to 2.04× speedup (average 1.27×).

• Simulation: P 2 synthesizes all mapping and hierarchy-
aware reduction strategies, but evaluating hundreds or
thousands of them to identify the best can be expensive.
We therefore introduce a simulator for predicting the
end-to-end performance of a parallelism matrix and re-
duction strategy (Section 5). The simulator is aware of
the network topology including different bandwidths
for different interconnects and networks (e.g., NVLink
and ethernet / data-center network in GPU topologies),
predicting with reasonable accuracy the communica-
tion overhead for each parallelism placement and re-
duction strategy. The validation – over all mappings
and synthesized programs for each mapping, and for
each of the two GPU systems we considered – demon-
strates that the simulator has 52%, 72%, and 92% of
top-1, top-5 and top-10 accuracy, respectively, making
it practical for identifying a much smaller subset of
programs for actual evaluation.

P 2 is helpful for ML practitioners to speed up their models
by improving placement and synthesizing reduction strate-
gies tailored to their system hierarchies. For instance, we
have used P 2 to improve ResNet-50 (He et al., 2016) data-
parallel training by 15% across 4 nodes, each with 8 V100
GPUs. (See Section 4 for the details of this system.)

2 OVERVIEW

This section outlines the key design in P 2. First, a system
consists of two entities: (1) a hardware hierarchy, where
each level has a name and a cardinality; and (2) a set of
switched interconnects. The system hierarchy is expected
to reflect how devices are arranged. Figure 2a describes
an example system with 16 GPUs (Cho et al., 2019). The
hierarchy is one-dimensional: a rack has 2 servers, each
with 2 CPUs connecting 4 GPUs. Interconnects specify
how devices are connected with each other and the latency
and bandwidth constraints. In this case, we have exactly
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P 2: a tool for parallelism placement and placement-aware

synthesis of reduction strategies

▶ Parallelism placement synthesis: mapping parallelism axes to the system
hierarchy.

▶ Reduction strategy synthesis: synthesize a wide variety of reduction
strategies to implement reductions using common collective operations.
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Parallelism Placement

Objective: Deciding which parts of a partitioned program will execute on which
parts of a system.

Challenge: Synthesizing all arbitrary device mappings can be extremely
expensive.

Solution: Partition parallelism axes over the system hierarchy to generate
topology-aware parallelism placements.
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(a) [(rack, 1), (server, 2), (CPU, 2), (GPU, 4)] (b)
[
1 2 2 1
1 1 1 4

]
(c)
[
1 2 1 2
1 1 2 2

]
(d)

[
1 1 2 2
1 2 1 2

]

Figure 2: (a): A system. (b), (c), (d): Possible (non-exhaustive) parallelism placements for (a) under data parallelism of size
4 and 4 parameter shards. For clarity, we show only the 16 GPUs but omit interconnects. Device marker n/m indicates data
batch n and parameter shard m.

• Parallelism placement synthesis: Given the parallelism
axes, the reduction axes, and a hierarchical system
topology, P 2 automatically synthesizes hierarchical
parallelism placements, where a parallelism placement
is modelled as a parallelism matrix mapping from par-
allelism axes to the system hierarchy (Section 3.1).
The notion of parallelism matrices greatly reduces the
space of parallelism placements contrary to a naive
implementation.

• Reduction strategy synthesis: For each parallelism
placement, P 2 utilizes the system hierarchy to fur-
ther synthesize a wide variety of reduction strategies
to implement reductions using common collective op-
erations. To achieve this, we introduce: (a) a formal
semantics for collectives (Section 3.2) based on Hoare
triples (Hoare, 1969); (2) a domain-specific language
(DSL) that can express possibly simultaneous reduc-
tions amongst groups of devices based on the system
hierarchy (Section 3.3); and (b) a lowering of our DSL
into sequences of collective operations. We use the
formal semantics to guide a syntax-directed synthesis
procedure on our DSL.

• Synthesis hierarchy: We show how the parallelism ma-
trix, which determines a candidate parallelism place-
ment, can be put to good use by the synthesizer to mas-
sively reduce the space of programs considered without
missing any semantically valid programs – provably
(Section 3.4).

• Evaluation: We evaluate the parallelism matrices and
reduction strategies synthesized by P 2 on two differ-
ent GPU systems available on Google Cloud Platform
(GCP) (Section 4). We use collective operations as
implemented by NVIDIA’s NCCL communication li-
brary (NVidia, 2021), exposed through XLA. The eval-
uation demonstrates (1) the impact of parallelism place-
ment: the performance of a single AllReduce across
different parallelism matrices differs up to 448.5×;
and (2) the effectiveness of custom reduction strate-
gies: for 69% of all parallelism mapping matrices, a

synthesized reduction outperforms AllReduce with up
to 2.04× speedup (average 1.27×).

• Simulation: P 2 synthesizes all mapping and hierarchy-
aware reduction strategies, but evaluating hundreds or
thousands of them to identify the best can be expensive.
We therefore introduce a simulator for predicting the
end-to-end performance of a parallelism matrix and re-
duction strategy (Section 5). The simulator is aware of
the network topology including different bandwidths
for different interconnects and networks (e.g., NVLink
and ethernet / data-center network in GPU topologies),
predicting with reasonable accuracy the communica-
tion overhead for each parallelism placement and re-
duction strategy. The validation – over all mappings
and synthesized programs for each mapping, and for
each of the two GPU systems we considered – demon-
strates that the simulator has 52%, 72%, and 92% of
top-1, top-5 and top-10 accuracy, respectively, making
it practical for identifying a much smaller subset of
programs for actual evaluation.

P 2 is helpful for ML practitioners to speed up their models
by improving placement and synthesizing reduction strate-
gies tailored to their system hierarchies. For instance, we
have used P 2 to improve ResNet-50 (He et al., 2016) data-
parallel training by 15% across 4 nodes, each with 8 V100
GPUs. (See Section 4 for the details of this system.)

2 OVERVIEW

This section outlines the key design in P 2. First, a system
consists of two entities: (1) a hardware hierarchy, where
each level has a name and a cardinality; and (2) a set of
switched interconnects. The system hierarchy is expected
to reflect how devices are arranged. Figure 2a describes
an example system with 16 GPUs (Cho et al., 2019). The
hierarchy is one-dimensional: a rack has 2 servers, each
with 2 CPUs connecting 4 GPUs. Interconnects specify
how devices are connected with each other and the latency
and bandwidth constraints. In this case, we have exactly
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Reduction Strategy

P 2 synthesizes topology-aware reduction strategies using common collective
operations.

▶ (a) is commonly used but it does not utilize the topology of the system.

▶ (b) and (c) are strategies synthesized by P 2. Their first steps are within S0.

▶ (c) has fewer data to transfer over S1/S2 than (b), but it has more steps.Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems for Deep Learning

one kind of interconnect in each level, but, in general, the
interconnect topology can be more complex: there can be
multiple interconnects in one level, and an interconnect can
connect devices (and other interconnects) across levels.

2.1 Parallelism Placement

Parallel placement decides which parts of a partitioned pro-
gram will execute on which parts of a system. However,
synthesizing all arbitrary device mappings, as well as run-
ning experiments with them, can be extremely expensive if
implemented naively. For example, if we have data paral-
lelism of size 4 and 4 parameter shards for the system in
Figure 2a, then there will be (4 ∗ 4)! > 244 possibilities to
decide which partitioned program maps to which GPU.

To explore the search space efficiently, the critical idea of
P 2 is to partition parallelism axes over the system hierarchy
to generate topology-aware parallelism placements, while
still being able to systematically generate a wide range of
parallelism placements. Specifically, a result of parallelism
placement synthesis is a parallelism matrix, where each
element is a parallelism factor representing the number of a
specific level in the hierarchy that a parallelism form splits
the computation across. Figures 2b, 2c and 2d show exam-
ples of parallelism matrices synthesized by P 2, where we
have data parallelism of size 4 and 4 parameter shards. In
Figure 2b, the first row

[
1 2 2 1

]
corresponds to a factoriza-

tion of data parallelism on each system level. Specifically,
we first assign all data parallelism (of size 4) into 1 rack
(each with data parallelism of size 4/1 = 4). Then each
rack assigns data parallelism of size 4 into 2 servers (each
with data parallelism of size 4/2 = 2). Next, each server as-
signs data parallelism of size 2 into 2 CPUs (each with data
parallelism of size 2/2 = 1). Finally, each CPU assigns data
parallelism of size 1 into 1 GPU. The second row

[
1 1 1 4

]

corresponds to a factorization of parameter sharding: each
rack, server, and CPU gets assigned all parameter shards (of
size 4), and each CPU then assigns 4 parameter shards into
4 GPUs, each GPU level with 4/4 = 1 shard. Therefore,
in the resulting placement, each CPU corresponds to one
replica (data parallelism) where each GPU has one parame-
ter shard. We can interpret Figure 2c and 2d accordingly.

Note how parallelism matrices decide communication re-
quirements. Consider reduction along parameter sharding
(i.e., reduce devices n/m with the same n but different m).
In Figure 2b, this can be done by communication over only
S0, while in 2c, half of the data can be reduced by only S0,
but the rest of the reduction requires communication over
S0/S1/S2. We discuss the impact of parallelism placements
on communication cost in detail in Section 4.

(a) AllReduce (b) AllReduce-AllReduce (c) Reduce-AllReduce-Broadcast

Figure 3: Example reduction strategies.

(a) ReduceScatter - AllReduce (b) AllReduce - AllReduce

Figure 4: Semantically invalid reduction. (a): Reduce data
that should not be reduced. (b): Reduce the same data twice.

2.2 Reduction Strategy

For each parallelism matrix, P 2 further synthesizes
topology-aware reduction strategies using common collec-
tive operations, which allows us to find the optimal reduction
strategy for any given parallelism matrix.

To illustrate the idea, consider the parallelism matrix in Fig-
ure 2d, and the goal is to reduce along parameter sharding.
As shown in Figure 3a, an obvious choice to perform the
reduction is a single AllReduce within reduction groups.
However, such reduction may be suboptimal, as it does not
utilize the topology of the system. Figure 3b and 3c show
two reduction strategies, among others, synthesized by P 2.
Figure 3b first performs a step of AllReduce which commu-
nicates over only S0, and then AllReduce that communicates
over S0/S1/S2. Figure 3c first performs Reduce that puts
the reduction result in the root device, then AllReduce be-
tween root devices, and finally Broadcast that broadcasts
data from the root device. Of particular interest in these
two reduction strategies is that no one is strictly better than
the other, as the communication overhead depends on the
network: 3c takes more steps, but has fewer data to be trans-
ferred over S1/S2, which may outperform 3b if S0 has high
bandwidth while communication over S1/S2 is expensive.

P 2 gives us a systematic way to synthesize and compare
a wide range of topology-aware reduction strategies. In
particular, synthesized reduction strategies can outperform a
single step AllReduce, with speedup up to 2.05×. However,
synthesizing reduction strategies also imposes challenges,
which we outline in the rest of this section.

2.3 Formalism of Collective Operations

To synthesize reduction strategies, we first need to formal-
ize the semantics of collective operations, since not all se-
quences of operationally valid collective operations corre-
spond to semantically correct implementations of the end-to-
end reduction requested by the user. For example, consider
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Formalism of Collective Operations

Synthesizing all sequences of collective operations is not necessary. Some
sequences of the operations lead to semantically invalid states that can never
reach the final desired state.

P 2 formalize common collective operations using Hoare triples. A Hoare triple
{G1}C{G2} means when the precondition {G1} is met, executing the command C
establishes the postcondition {G2}.
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Synthesis Algorithm
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Parallelism Placement

The Parallelism placement is defined by the parallelism matrix.

Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems for Deep Learning

vation applies for reduction over multiple axes. An example
is given in the second half of Table 1. In this case, the reduc-
tion axes based synthesis hierarchy is

[
1 2 3 7 8 9

]
. Note

that some parallelism factors are from the same hardware
level: 1 and 7, 2 and 8, and 3 and 9. Since for switched
networks, splitting hardware hierarchies does not bring ben-
efits in most cases, we can collapse parallelism factors of
the same hardware hierarchies. In this example, the final
synthesis hierarchy is

[
7 16 27

]
.

3 PROGRAM SYNTHESIS

We now present the program synthesis algorithm in P 2.

3.1 Parallelism Placement

Parallelism placement partitions parallelism axes over the
system hierarchy. With the novel notion of the parallelism
matrix and its interpretation (Section 2.1), synthesizing par-
allelism matrices is straightforward. Consider
H =

[
h0 · · · hn

]
is the system hierarchy (e.g.,

[
1 2 2 4

]
),

P =
[
p0 · · · pm

]
is the parallelism axes (e.g.,

[
4 4
]
),

then a parallelism matrix is


x0,0 x0,1 . . . x0,n

...
...

. . .
...

xm,0 xm,1 · · · xm,n




subject to:
m∏

i=0

xi,j = hj , j = 0, ..., n (1)

n∏

j=0

xi,j = pi, i = 0, ...,m (2)

Equation (1) requires the product of a column to be equiva-
lent to the corresponding system hierarchy cardinality, while
Equation (2) requires the product of a row to be equivalent
to the corresponding parallelism axis.

3.2 Collective Operations

This section defines the semantics of collective operations.
In this work we focus on the common ones: AllReduce,
ReduceScatter, AllGather, Reduce and Broadcast.

Notations We first define the notations.

d device
s ∈ Bk×k device state
G := di : si state context
C := AllReduce | ReduceScatter
| AllGather | Reduce | Broadcast

We use d to denote a device, whose state s is represented as
a boolean matrix of dimensions k × k; k being the number
of devices. In particular we treat the data as being split in
k chunks. The ith row of a state matrix represents the ith
chunk. s[i][j] = 1 means that device j has contributed its

3 data chunks
reduced from device 0 and 1
reduced from device 1 and 2

reduced from device 2 and 3

Figure 7: A device state. Assume we have in total 4 devices
(i.e., device 0,1,2 and 3), so each device state is a 4 × 4
matrix. s[i][j] is colored if s[i][j] = 1. The device state has
3 non-empty rows, meaning that it has 3 data chunks. Each
data chunk describes where the data is reduced from. For
example, the first data chunk is the reduction result between
the original first data chunk of device 0 and 1.

original ith chunk to the reduction result. Figure 7 gives an
example. A state context G maps devices to their states.

Note finally that Reduce and Broadcast typically take a root
device to reduce to or broadcast from. Since we focus on
hierarchical systems, we always use the first device in a
reduction group as the root without loss of generality.

Semantics Figure 8 defines the semantics of collective
operations, which is closely based on Hoare rules (Hoare,
1969). Each reduction takes the form of a Hoare triple
{ G1 } C { G2 }, which means that from the pre-condition
state G1, a step of reduction C yields to the post-condition
state G2. Explanations of auxiliary functions are given in
the figure. To better illustrate the semantics, the right of
Figure 8 provides examples of each collective operation.

At a high level, these rules capture the constraints for
a reduction step to be semantically correct. Rule R-
ALLREDUCE first checks that the data contained in each
device (denoted as rows representing the non-empty rows)
should have the same data chunks. Moreover, columns in
any specific chunk should be disjoint. Both constraints are
essential for the reduction result to be valid: we should not
reduce data from different chunks or reduce the same data
twice (as discussed in Section 2.3). Finally, we generate the
resulting state ]si for each device by adding up all matri-
ces. Rule S-REDUCESCATTER and S-REDUCE are similar
to rule S-ALLREDUCE, except that S-REDUCESCATTER
scatters the reduction result over devices, where scatter
raises an error if the number of data chunks in s is not di-
visible by the number of devices; and S-REDUCE puts the
result only in the first device and clears up the rest of the
devices. Rule S-ALLGATHER simply needs all data rows to
be disjoint. Rule S-BROADCAST overrides the data of every
device with the data from the first one. As an optimization,
the rule enforces information increase, i.e., the data to be
broadcasted must be as informative as data in other devices
and more informative than at least one other device.
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vation applies for reduction over multiple axes. An example
is given in the second half of Table 1. In this case, the reduc-
tion axes based synthesis hierarchy is

[
1 2 3 7 8 9

]
. Note

that some parallelism factors are from the same hardware
level: 1 and 7, 2 and 8, and 3 and 9. Since for switched
networks, splitting hardware hierarchies does not bring ben-
efits in most cases, we can collapse parallelism factors of
the same hardware hierarchies. In this example, the final
synthesis hierarchy is

[
7 16 27

]
.

3 PROGRAM SYNTHESIS

We now present the program synthesis algorithm in P 2.

3.1 Parallelism Placement

Parallelism placement partitions parallelism axes over the
system hierarchy. With the novel notion of the parallelism
matrix and its interpretation (Section 2.1), synthesizing par-
allelism matrices is straightforward. Consider
H =

[
h0 · · · hn

]
is the system hierarchy (e.g.,

[
1 2 2 4

]
),

P =
[
p0 · · · pm

]
is the parallelism axes (e.g.,

[
4 4
]
),

then a parallelism matrix is


x0,0 x0,1 . . . x0,n

...
...

. . .
...

xm,0 xm,1 · · · xm,n




subject to:
m∏

i=0

xi,j = hj , j = 0, ..., n (1)

n∏

j=0

xi,j = pi, i = 0, ...,m (2)

Equation (1) requires the product of a column to be equiva-
lent to the corresponding system hierarchy cardinality, while
Equation (2) requires the product of a row to be equivalent
to the corresponding parallelism axis.

3.2 Collective Operations

This section defines the semantics of collective operations.
In this work we focus on the common ones: AllReduce,
ReduceScatter, AllGather, Reduce and Broadcast.

Notations We first define the notations.

d device
s ∈ Bk×k device state
G := di : si state context
C := AllReduce | ReduceScatter
| AllGather | Reduce | Broadcast

We use d to denote a device, whose state s is represented as
a boolean matrix of dimensions k × k; k being the number
of devices. In particular we treat the data as being split in
k chunks. The ith row of a state matrix represents the ith
chunk. s[i][j] = 1 means that device j has contributed its

3 data chunks
reduced from device 0 and 1
reduced from device 1 and 2

reduced from device 2 and 3

Figure 7: A device state. Assume we have in total 4 devices
(i.e., device 0,1,2 and 3), so each device state is a 4 × 4
matrix. s[i][j] is colored if s[i][j] = 1. The device state has
3 non-empty rows, meaning that it has 3 data chunks. Each
data chunk describes where the data is reduced from. For
example, the first data chunk is the reduction result between
the original first data chunk of device 0 and 1.

original ith chunk to the reduction result. Figure 7 gives an
example. A state context G maps devices to their states.

Note finally that Reduce and Broadcast typically take a root
device to reduce to or broadcast from. Since we focus on
hierarchical systems, we always use the first device in a
reduction group as the root without loss of generality.

Semantics Figure 8 defines the semantics of collective
operations, which is closely based on Hoare rules (Hoare,
1969). Each reduction takes the form of a Hoare triple
{ G1 } C { G2 }, which means that from the pre-condition
state G1, a step of reduction C yields to the post-condition
state G2. Explanations of auxiliary functions are given in
the figure. To better illustrate the semantics, the right of
Figure 8 provides examples of each collective operation.

At a high level, these rules capture the constraints for
a reduction step to be semantically correct. Rule R-
ALLREDUCE first checks that the data contained in each
device (denoted as rows representing the non-empty rows)
should have the same data chunks. Moreover, columns in
any specific chunk should be disjoint. Both constraints are
essential for the reduction result to be valid: we should not
reduce data from different chunks or reduce the same data
twice (as discussed in Section 2.3). Finally, we generate the
resulting state ]si for each device by adding up all matri-
ces. Rule S-REDUCESCATTER and S-REDUCE are similar
to rule S-ALLREDUCE, except that S-REDUCESCATTER
scatters the reduction result over devices, where scatter
raises an error if the number of data chunks in s is not di-
visible by the number of devices; and S-REDUCE puts the
result only in the first device and clears up the rest of the
devices. Rule S-ALLGATHER simply needs all data rows to
be disjoint. Rule S-BROADCAST overrides the data of every
device with the data from the first one. As an optimization,
the rule enforces information increase, i.e., the data to be
broadcasted must be as informative as data in other devices
and more informative than at least one other device.

The state of a device is a k × k boolean matrix where s[i][j] = 1 means that
device j has contributed its original ith chunk to the reduction result.Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems for Deep Learning

vation applies for reduction over multiple axes. An example
is given in the second half of Table 1. In this case, the reduc-
tion axes based synthesis hierarchy is

[
1 2 3 7 8 9

]
. Note

that some parallelism factors are from the same hardware
level: 1 and 7, 2 and 8, and 3 and 9. Since for switched
networks, splitting hardware hierarchies does not bring ben-
efits in most cases, we can collapse parallelism factors of
the same hardware hierarchies. In this example, the final
synthesis hierarchy is

[
7 16 27

]
.

3 PROGRAM SYNTHESIS

We now present the program synthesis algorithm in P 2.

3.1 Parallelism Placement

Parallelism placement partitions parallelism axes over the
system hierarchy. With the novel notion of the parallelism
matrix and its interpretation (Section 2.1), synthesizing par-
allelism matrices is straightforward. Consider
H =

[
h0 · · · hn

]
is the system hierarchy (e.g.,

[
1 2 2 4

]
),

P =
[
p0 · · · pm

]
is the parallelism axes (e.g.,

[
4 4
]
),

then a parallelism matrix is


x0,0 x0,1 . . . x0,n

...
...

. . .
...

xm,0 xm,1 · · · xm,n




subject to:
m∏

i=0

xi,j = hj , j = 0, ..., n (1)

n∏

j=0

xi,j = pi, i = 0, ...,m (2)

Equation (1) requires the product of a column to be equiva-
lent to the corresponding system hierarchy cardinality, while
Equation (2) requires the product of a row to be equivalent
to the corresponding parallelism axis.

3.2 Collective Operations

This section defines the semantics of collective operations.
In this work we focus on the common ones: AllReduce,
ReduceScatter, AllGather, Reduce and Broadcast.

Notations We first define the notations.

d device
s ∈ Bk×k device state
G := di : si state context
C := AllReduce | ReduceScatter
| AllGather | Reduce | Broadcast

We use d to denote a device, whose state s is represented as
a boolean matrix of dimensions k × k; k being the number
of devices. In particular we treat the data as being split in
k chunks. The ith row of a state matrix represents the ith
chunk. s[i][j] = 1 means that device j has contributed its

3 data chunks
reduced from device 0 and 1
reduced from device 1 and 2

reduced from device 2 and 3

Figure 7: A device state. Assume we have in total 4 devices
(i.e., device 0,1,2 and 3), so each device state is a 4 × 4
matrix. s[i][j] is colored if s[i][j] = 1. The device state has
3 non-empty rows, meaning that it has 3 data chunks. Each
data chunk describes where the data is reduced from. For
example, the first data chunk is the reduction result between
the original first data chunk of device 0 and 1.

original ith chunk to the reduction result. Figure 7 gives an
example. A state context G maps devices to their states.

Note finally that Reduce and Broadcast typically take a root
device to reduce to or broadcast from. Since we focus on
hierarchical systems, we always use the first device in a
reduction group as the root without loss of generality.

Semantics Figure 8 defines the semantics of collective
operations, which is closely based on Hoare rules (Hoare,
1969). Each reduction takes the form of a Hoare triple
{ G1 } C { G2 }, which means that from the pre-condition
state G1, a step of reduction C yields to the post-condition
state G2. Explanations of auxiliary functions are given in
the figure. To better illustrate the semantics, the right of
Figure 8 provides examples of each collective operation.

At a high level, these rules capture the constraints for
a reduction step to be semantically correct. Rule R-
ALLREDUCE first checks that the data contained in each
device (denoted as rows representing the non-empty rows)
should have the same data chunks. Moreover, columns in
any specific chunk should be disjoint. Both constraints are
essential for the reduction result to be valid: we should not
reduce data from different chunks or reduce the same data
twice (as discussed in Section 2.3). Finally, we generate the
resulting state ]si for each device by adding up all matri-
ces. Rule S-REDUCESCATTER and S-REDUCE are similar
to rule S-ALLREDUCE, except that S-REDUCESCATTER
scatters the reduction result over devices, where scatter
raises an error if the number of data chunks in s is not di-
visible by the number of devices; and S-REDUCE puts the
result only in the first device and clears up the rest of the
devices. Rule S-ALLGATHER simply needs all data rows to
be disjoint. Rule S-BROADCAST overrides the data of every
device with the data from the first one. As an optimization,
the rule enforces information increase, i.e., the data to be
broadcasted must be as informative as data in other devices
and more informative than at least one other device.
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{ G1 } C { G2 } (Reduction: from the pre-condition state G1, C yields to the post-condition state G2 )

R-ALLREDUCE
∀i j, si.rows = sj .rows ∀i j k, i 6= j =⇒ si[k]©? sj [k] s = ]si

{ di : si }AllReduce { di : s }
R-REDUCESCATTER
∀i j, si.rows = sj .rows ∀i j k, i 6= j =⇒ si[k]©? sj [k] s = ]si s′i = scatter(s, i)[i]

{ di : si }ReduceScatter { di : s′i }
R-ALLGATHER
∀i j, i 6= j =⇒ si.rows©? sj .rows ∀i j, |si.rows| = |sj .rows| s = ]si

{ di : si }AllGather { di : s }
R-REDUCE
∀i j, si.rows = sj .rows ∀i j k, i 6= j =⇒ si[k]©? sj [k] s = ]si

{ di : si }Reduce { d0 : s, di : {}
i 6=0 }

©? disjoint rows non-empty rows
] addition | · | length
scatter(s, i) scatters non-empty rows in s over devices i

R-BROADCAST
∀i, si ≤ s0 ∃i, si < s0

{ di : si }Broadcast { di : s0 }

before after

Figure 8: Semantics of collective operations. with the right presents examples of each operation. For those examples, we
have in total 4 devices .e., device 0,1,2, and 3), so each device state is a 4× 4 matrix. We assume the reduction happens
between only device 0 and 1. The pre-condition states of device 0 (top) and 1 (bottom) are on the left, and after a step of
reduction, their states turn into the post-condition states on the right.

3.3 Reduction Programs

We now turn to our reduction language which is built on top
of the formalism of collective operations.

program ∈ [reduction]
reduction ∈ slice× form× C
slice := e
form := InsideGroup | Parallel(e) | Master(e)

A reduction strategy is represented as a program, which
is essentially a list of reduction instructions. A reduction
instruction consists of a slice, a form, and a collective
operation C. We use e to represent a level in the synthesis
hierarchy. The slice chooses a level. The form has three
patterns: InsideGroup, Parallel(e), and Master(e). Inside a
reduction, the e carried in the form must be an ancestor of
the one carried in the slice. The slice and the form together
decide the device groups that will perform the operation C.

It turns out that slice and form are quite expressive
and can encode many common hierarchical communi-
cation patterns. Table 2 demonstrates several examples
using the system hierarchy in Figure 2a. Specifically, a
slice divides devices into reduction groups, and form
decides the reduction form happening for the reduction
groups. For example, consider that the slice is CPU,
then we get reduction groups within each CPU, i.e.,

{A0,A1,A2,A3}, {B0,B1,B2,B3}, {C0,C1,C2,C3}, {D0,D1,D2,D3}.
Now, if the form is InsideGroup, then we perform reduction
within each reduction group. If the form is Parallel(e), we
perform reduction over the first device in each group, the
second device in each group, etc, if they connect to the
same e. Thus, Parallel(server) generates {A0,B0}, {A1,B1},
etc., whereas Parallel(rack) generates {A0,B0,C0,D0} etc.
Master generates the device groups in the same way as
Parallel, but only reduces over the first device group.

Note that Table 2 presents device groups for reduction over
the system hierarchy [(rack, 1), (server, 2), (CPU, 2), (GPU,
4)]. As we discussed in Section 2.5, reduction over specific
parallelism axes will use the synthesis hierarchy formed by
parallelism factors, and we will get reduction groups for
that particular reduction axis like {A0,A1}, {A2,A3} etc.

Supposing slice and form derive the device groups Gi,
which are disjoint by construction, we define the semantics
of a reduction instruction as:

(slice, form) derives Gi { Gi } C { G′i }
{ Gi,G } (slice, form, C) { G′i,G }

where each device group participating in the reduction gets
the device states updated according to the semantics of
collective operations, and devices not participating in the
reduction have their states unchanged. A reduction program



Content Introduction Design Overview Synthesis Algorithm Experiments Summary

Reduction Program
A reduction strategy is represented as a program, a list of reduction instructions.

Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems for Deep Learning

{ G1 } C { G2 } (Reduction: from the pre-condition state G1, C yields to the post-condition state G2 )

R-ALLREDUCE
∀i j, si.rows = sj .rows ∀i j k, i 6= j =⇒ si[k]©? sj [k] s = ]si

{ di : si }AllReduce { di : s }
R-REDUCESCATTER
∀i j, si.rows = sj .rows ∀i j k, i 6= j =⇒ si[k]©? sj [k] s = ]si s′i = scatter(s, i)[i]

{ di : si }ReduceScatter { di : s′i }
R-ALLGATHER
∀i j, i 6= j =⇒ si.rows©? sj .rows ∀i j, |si.rows| = |sj .rows| s = ]si

{ di : si }AllGather { di : s }
R-REDUCE
∀i j, si.rows = sj .rows ∀i j k, i 6= j =⇒ si[k]©? sj [k] s = ]si

{ di : si }Reduce { d0 : s, di : {}
i 6=0 }

©? disjoint rows non-empty rows
] addition | · | length
scatter(s, i) scatters non-empty rows in s over devices i

R-BROADCAST
∀i, si ≤ s0 ∃i, si < s0

{ di : si }Broadcast { di : s0 }

before after

Figure 8: Semantics of collective operations. with the right presents examples of each operation. For those examples, we
have in total 4 devices .e., device 0,1,2, and 3), so each device state is a 4× 4 matrix. We assume the reduction happens
between only device 0 and 1. The pre-condition states of device 0 (top) and 1 (bottom) are on the left, and after a step of
reduction, their states turn into the post-condition states on the right.

3.3 Reduction Programs

We now turn to our reduction language which is built on top
of the formalism of collective operations.

program ∈ [reduction]
reduction ∈ slice× form× C
slice := e
form := InsideGroup | Parallel(e) | Master(e)

A reduction strategy is represented as a program, which
is essentially a list of reduction instructions. A reduction
instruction consists of a slice, a form, and a collective
operation C. We use e to represent a level in the synthesis
hierarchy. The slice chooses a level. The form has three
patterns: InsideGroup, Parallel(e), and Master(e). Inside a
reduction, the e carried in the form must be an ancestor of
the one carried in the slice. The slice and the form together
decide the device groups that will perform the operation C.

It turns out that slice and form are quite expressive
and can encode many common hierarchical communi-
cation patterns. Table 2 demonstrates several examples
using the system hierarchy in Figure 2a. Specifically, a
slice divides devices into reduction groups, and form
decides the reduction form happening for the reduction
groups. For example, consider that the slice is CPU,
then we get reduction groups within each CPU, i.e.,

{A0,A1,A2,A3}, {B0,B1,B2,B3}, {C0,C1,C2,C3}, {D0,D1,D2,D3}.
Now, if the form is InsideGroup, then we perform reduction
within each reduction group. If the form is Parallel(e), we
perform reduction over the first device in each group, the
second device in each group, etc, if they connect to the
same e. Thus, Parallel(server) generates {A0,B0}, {A1,B1},
etc., whereas Parallel(rack) generates {A0,B0,C0,D0} etc.
Master generates the device groups in the same way as
Parallel, but only reduces over the first device group.

Note that Table 2 presents device groups for reduction over
the system hierarchy [(rack, 1), (server, 2), (CPU, 2), (GPU,
4)]. As we discussed in Section 2.5, reduction over specific
parallelism axes will use the synthesis hierarchy formed by
parallelism factors, and we will get reduction groups for
that particular reduction axis like {A0,A1}, {A2,A3} etc.

Supposing slice and form derive the device groups Gi,
which are disjoint by construction, we define the semantics
of a reduction instruction as:

(slice, form) derives Gi { Gi } C { G′i }
{ Gi,G } (slice, form, C) { G′i,G }

where each device group participating in the reduction gets
the device states updated according to the semantics of
collective operations, and devices not participating in the
reduction have their states unchanged. A reduction program
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slice form groups(slice, form)

CPU InsideGroup {A0,A1,A2,A3}, {B0,B1,B2,B3},
{C0,C1,C2,C3}, {D0,D1,D2,D3}

Parallel(server) {A0,B0}, {A1,B1}, {A2,B2}, {A3,B3}
{C0,D0}, {C1,D1}, {C2,D2}, {C3,D3}

Parallel(rack) {A0,B0,C0,D0}, {A1,B1,C1,D1},
{A2,B2,C2,D2}, {A3,B3,C3,D3}

Master(rack) {A0,B0,C0,D0}
server InsideGroup {A0,A1,A2,A3,B0,B1,B2,B3},

{C0,C1,C2,C3,D0,D1,D2,D3}
Parallel(rack) {A0,C0}, {A1,C1}, {A2,C2}, {A3,C3}

{B0,D0}, {B1,D1}, {B2,D2}, {B3,D3}
rack InsideGroup {A0,A1,A2,A3,B0,B1,B2,B3,

C0,C1,C2,C3,D0,D1,D2,D3}

Table 2: Hierarchical communication patterns for Figure 2a.

then iteratively applies each reduction:

program = reduction
i∈n { Gi } reductioni { Gi+1 }

{ G0 } program { Gn+1 }

3.4 Synthesis Hierarchy

In Section 2.5, we have proposed and compared different
synthesis hierarchies for synthesizing reduction programs:

(a) System hierarchy (
[
1 2 2 4

]
)

(b) Column-based parallelism factors (
[
1 1 1 2 2 1 2 2

]
)

(c) Row-based parallelism factors (
[
1 1 2 2 1 2 1 2

]
)

(d) Reduction axis parallelism factors (
[
1 2 1 2

]
)

P 2 uses (d). Here, we formally prove the theorem that justi-
fies our choice. First, every reduction instruction essentially
decides the device groups G and the operation C. Therefore,
a program can be lowered to a sequence (G1, C1), (G2, C2),
..., (Gn, Cn). Since (d) includes only the reduction axis,
lowering for (d) applies the generated grouping patterns to
non-reduction axes when forming device groups.

Definition 3.1 (Expressive power of synthesis hierarchy).
A synthesis hierarchy is more expressive than (≥) another, if
every valid lowered program L synthesized using the latter
can be synthesized using the former.

Theorem 3.2. (d) ≥ (c) ≥ (b) ≥ (a).

Proof. For space reasons, we show one example that il-
lustrates the key proof strategy, and we refer the reader
to the appendix for the full proof. Consider proving
(c) ≥ (b), where (b) synthesizes a valid reduction step
(e2,Parallel(e1), C). For the reduction to be valid, every
reduction group must be partitioned only over the reduc-
tion axis. Therefore, all non-reduction parallelism factors
column-wisely between e1 (exclusive) and e2 (inclusive)
can only be 1. An example is given below on the left.
Now we construct a reduction instruction for (c) that ex-
presses the same reduction. Suppose the reduction step
in (b) covers parallelism factors ei, ..., ej on the reduction
axis. Let e′1 be the level corresponding to the parallelism

factor right before ei row-wisely, and let e′2 be ej . Then
(e′2,Parallel(e

′
1), C) is a desired reduction instruction.



x0,0 1 1 x0,3

x1,0 1 1 x1,3

x2,0 x2,1 x2,2 x2,3

1 1 1 x3,3


e1

e2
reduction

axis



x0,0 1 1 x0,3

x1,0 1 1 x1,3

x2,0 x2,1 x2,2 x2,3

1 1 1 x3,3


 e′1
e′2

3.5 Program Synthesis for Reduction Programs

So far, we have given the constraint for generating paral-
lelism matrices (Section 3.1) and how we can obtain a syn-
thesis hierarchy from a parallelism matrix (Section 3.4). The
last missing piece is how to synthesize reduction programs.

To formalize the synthesis problem, we need an initial pre-
condition state as the beginning state and a post-condition
state as the final desired state. Initially, every device only
holds its own data, and therefore device i has 1 in the ith
column, and 0 in any other position. In the final desired
state, a device should have 1 in all columns corresponding
to devices in its reduction group, and 0 in any other position.
An extra indirection is caused from using the reduction axis
parallelism factors as the synthesis hierarchy (Section 3.4),
which only includes part of the system, and then lowers
the program to the full system. Therefore, our goal is to
synthesize a program, whose lowering L subjects to:



di :

i


0 . . . 1 . . . 0

...
. . .

...
. . .

...
0 · · · 1 . . . 0







L




di :

i j


0 . . . 1 . . . 0 . . . 1 . . . 0

...
. . .

...
. . .

...
. . .

...
. . .

...
0 · · · 1 . . . 0 · · · 1 · · · 0








supposing di reduces with devices j.

Given the syntax and the semantics of reduction programs,
we use syntax-guided program synthesis (Alur et al., 2013)
to synthesize programs in increasing order of program size.

4 EXPERIMENTS

We implement P 2 to synthesize parallelism matrices and re-
duction programs, and lower the programs into sequences of
XLA collective operations, which in turn result in sequences
of NCCL calls on the XLA GPU backend. We measure the
execution time of the compiled programs. The experiments
aim to answer the following research questions:

RQ1 What is the impact of parallelism placement on
reduction algorithms?

RQ2 Are our various techniques for taming the search
space effective so that we can quickly enumerate a wide
variety of reduction programs?

RQ3 Given a parallelism placement, can we find reduc-
tion strategies that outperform the default implementation
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(a) [(rack, 1), (server, 2), (CPU, 2), (GPU, 4)] (b)
[
1 2 2 1
1 1 1 4

]
(c)
[
1 2 1 2
1 1 2 2

]
(d)

[
1 1 2 2
1 2 1 2

]

Figure 2: (a): A system. (b), (c), (d): Possible (non-exhaustive) parallelism placements for (a) under data parallelism of size
4 and 4 parameter shards. For clarity, we show only the 16 GPUs but omit interconnects. Device marker n/m indicates data
batch n and parameter shard m.

• Parallelism placement synthesis: Given the parallelism
axes, the reduction axes, and a hierarchical system
topology, P 2 automatically synthesizes hierarchical
parallelism placements, where a parallelism placement
is modelled as a parallelism matrix mapping from par-
allelism axes to the system hierarchy (Section 3.1).
The notion of parallelism matrices greatly reduces the
space of parallelism placements contrary to a naive
implementation.

• Reduction strategy synthesis: For each parallelism
placement, P 2 utilizes the system hierarchy to fur-
ther synthesize a wide variety of reduction strategies
to implement reductions using common collective op-
erations. To achieve this, we introduce: (a) a formal
semantics for collectives (Section 3.2) based on Hoare
triples (Hoare, 1969); (2) a domain-specific language
(DSL) that can express possibly simultaneous reduc-
tions amongst groups of devices based on the system
hierarchy (Section 3.3); and (b) a lowering of our DSL
into sequences of collective operations. We use the
formal semantics to guide a syntax-directed synthesis
procedure on our DSL.

• Synthesis hierarchy: We show how the parallelism ma-
trix, which determines a candidate parallelism place-
ment, can be put to good use by the synthesizer to mas-
sively reduce the space of programs considered without
missing any semantically valid programs – provably
(Section 3.4).

• Evaluation: We evaluate the parallelism matrices and
reduction strategies synthesized by P 2 on two differ-
ent GPU systems available on Google Cloud Platform
(GCP) (Section 4). We use collective operations as
implemented by NVIDIA’s NCCL communication li-
brary (NVidia, 2021), exposed through XLA. The eval-
uation demonstrates (1) the impact of parallelism place-
ment: the performance of a single AllReduce across
different parallelism matrices differs up to 448.5×;
and (2) the effectiveness of custom reduction strate-
gies: for 69% of all parallelism mapping matrices, a

synthesized reduction outperforms AllReduce with up
to 2.04× speedup (average 1.27×).

• Simulation: P 2 synthesizes all mapping and hierarchy-
aware reduction strategies, but evaluating hundreds or
thousands of them to identify the best can be expensive.
We therefore introduce a simulator for predicting the
end-to-end performance of a parallelism matrix and re-
duction strategy (Section 5). The simulator is aware of
the network topology including different bandwidths
for different interconnects and networks (e.g., NVLink
and ethernet / data-center network in GPU topologies),
predicting with reasonable accuracy the communica-
tion overhead for each parallelism placement and re-
duction strategy. The validation – over all mappings
and synthesized programs for each mapping, and for
each of the two GPU systems we considered – demon-
strates that the simulator has 52%, 72%, and 92% of
top-1, top-5 and top-10 accuracy, respectively, making
it practical for identifying a much smaller subset of
programs for actual evaluation.

P 2 is helpful for ML practitioners to speed up their models
by improving placement and synthesizing reduction strate-
gies tailored to their system hierarchies. For instance, we
have used P 2 to improve ResNet-50 (He et al., 2016) data-
parallel training by 15% across 4 nodes, each with 8 V100
GPUs. (See Section 4 for the details of this system.)

2 OVERVIEW

This section outlines the key design in P 2. First, a system
consists of two entities: (1) a hardware hierarchy, where
each level has a name and a cardinality; and (2) a set of
switched interconnects. The system hierarchy is expected
to reflect how devices are arranged. Figure 2a describes
an example system with 16 GPUs (Cho et al., 2019). The
hierarchy is one-dimensional: a rack has 2 servers, each
with 2 CPUs connecting 4 GPUs. Interconnects specify
how devices are connected with each other and the latency
and bandwidth constraints. In this case, we have exactly
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slice form groups(slice, form)

CPU InsideGroup {A0,A1,A2,A3}, {B0,B1,B2,B3},
{C0,C1,C2,C3}, {D0,D1,D2,D3}

Parallel(server) {A0,B0}, {A1,B1}, {A2,B2}, {A3,B3}
{C0,D0}, {C1,D1}, {C2,D2}, {C3,D3}

Parallel(rack) {A0,B0,C0,D0}, {A1,B1,C1,D1},
{A2,B2,C2,D2}, {A3,B3,C3,D3}

Master(rack) {A0,B0,C0,D0}
server InsideGroup {A0,A1,A2,A3,B0,B1,B2,B3},

{C0,C1,C2,C3,D0,D1,D2,D3}
Parallel(rack) {A0,C0}, {A1,C1}, {A2,C2}, {A3,C3}

{B0,D0}, {B1,D1}, {B2,D2}, {B3,D3}
rack InsideGroup {A0,A1,A2,A3,B0,B1,B2,B3,

C0,C1,C2,C3,D0,D1,D2,D3}

Table 2: Hierarchical communication patterns for Figure 2a.

then iteratively applies each reduction:

program = reduction
i∈n { Gi } reductioni { Gi+1 }

{ G0 } program { Gn+1 }

3.4 Synthesis Hierarchy

In Section 2.5, we have proposed and compared different
synthesis hierarchies for synthesizing reduction programs:

(a) System hierarchy (
[
1 2 2 4

]
)

(b) Column-based parallelism factors (
[
1 1 1 2 2 1 2 2

]
)

(c) Row-based parallelism factors (
[
1 1 2 2 1 2 1 2

]
)

(d) Reduction axis parallelism factors (
[
1 2 1 2

]
)

P 2 uses (d). Here, we formally prove the theorem that justi-
fies our choice. First, every reduction instruction essentially
decides the device groups G and the operation C. Therefore,
a program can be lowered to a sequence (G1, C1), (G2, C2),
..., (Gn, Cn). Since (d) includes only the reduction axis,
lowering for (d) applies the generated grouping patterns to
non-reduction axes when forming device groups.

Definition 3.1 (Expressive power of synthesis hierarchy).
A synthesis hierarchy is more expressive than (≥) another, if
every valid lowered program L synthesized using the latter
can be synthesized using the former.

Theorem 3.2. (d) ≥ (c) ≥ (b) ≥ (a).

Proof. For space reasons, we show one example that il-
lustrates the key proof strategy, and we refer the reader
to the appendix for the full proof. Consider proving
(c) ≥ (b), where (b) synthesizes a valid reduction step
(e2,Parallel(e1), C). For the reduction to be valid, every
reduction group must be partitioned only over the reduc-
tion axis. Therefore, all non-reduction parallelism factors
column-wisely between e1 (exclusive) and e2 (inclusive)
can only be 1. An example is given below on the left.
Now we construct a reduction instruction for (c) that ex-
presses the same reduction. Suppose the reduction step
in (b) covers parallelism factors ei, ..., ej on the reduction
axis. Let e′1 be the level corresponding to the parallelism

factor right before ei row-wisely, and let e′2 be ej . Then
(e′2,Parallel(e

′
1), C) is a desired reduction instruction.
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3.5 Program Synthesis for Reduction Programs

So far, we have given the constraint for generating paral-
lelism matrices (Section 3.1) and how we can obtain a syn-
thesis hierarchy from a parallelism matrix (Section 3.4). The
last missing piece is how to synthesize reduction programs.

To formalize the synthesis problem, we need an initial pre-
condition state as the beginning state and a post-condition
state as the final desired state. Initially, every device only
holds its own data, and therefore device i has 1 in the ith
column, and 0 in any other position. In the final desired
state, a device should have 1 in all columns corresponding
to devices in its reduction group, and 0 in any other position.
An extra indirection is caused from using the reduction axis
parallelism factors as the synthesis hierarchy (Section 3.4),
which only includes part of the system, and then lowers
the program to the full system. Therefore, our goal is to
synthesize a program, whose lowering L subjects to:
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supposing di reduces with devices j.

Given the syntax and the semantics of reduction programs,
we use syntax-guided program synthesis (Alur et al., 2013)
to synthesize programs in increasing order of program size.

4 EXPERIMENTS

We implement P 2 to synthesize parallelism matrices and re-
duction programs, and lower the programs into sequences of
XLA collective operations, which in turn result in sequences
of NCCL calls on the XLA GPU backend. We measure the
execution time of the compiled programs. The experiments
aim to answer the following research questions:

RQ1 What is the impact of parallelism placement on
reduction algorithms?

RQ2 Are our various techniques for taming the search
space effective so that we can quickly enumerate a wide
variety of reduction programs?

RQ3 Given a parallelism placement, can we find reduc-
tion strategies that outperform the default implementation

supposing di reduces with devices j̄.

P 2 uses a method called syntax-guided program synthesis for this purpose.
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Experimental Setup

▶ 2 and 4 nodes on Google Cloud
Platform.

▶ 2 system topologies.

Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems for Deep Learning

(a) 2 nodes, each with 16 A100 GPUs sharing one NVSwitch and
one NIC, and all NICs are connected in a data center

(b) 2 nodes, each with 8 V100 GPUs forming a ring via NVLink
and connected via PCIe switches. Each node consists of two CPUs
(each owning 4 GPUs) with one NIC to the DCN. A shared NIC
connecting the two CPUs is a modeling simplification – in reality
cross-domain communication is through shared memory.

Figure 9: System topology models for 2 nodes. For the
experiments, we run on both 2 and 4 nodes.

(i.e., AllReduce), and if so what is their form?

The experiments ran on two different GPU system configura-
tions available on Google Cloud Platform (GCP, 2021) (see
Figure 9): (i) NVIDIA A100, where each node consists of
16 GPUs sharing one NVSwitch and one NIC connecting to
the data center network; and (ii) NVIDIA Tesla V100, where
each node consists of 8 GPUs forming a ring via NVLink;
each pair of GPUs are connected via PCIe switches, and
each of the two CPUs of the node has 4 GPUS in its PCIe
domain. We experiment with both NCCL ring reduction and
tree reduction (Sanders et al., 2009), set by NCCL ALGO.

We run experiments with 2 and 4 nodes. For A100, the
system hierarchy is

[
2 16

]
or
[
4 16

]
. For V100, since the

NVLink ring connects all 8 GPUs, and the NVLink ring
has much higher bandwidth than PCIe bridges, we put 8
GPUs inside one layer, and so with 2 or 4 nodes, the system
hierarchy is

[
2 8
]

or
[
4 8
]
, respectively. Each GPU carries

a large amount of data ((229× nodes) of float32) to reduce
the impact of latency, and each program runs 10 times to
reduce the impact of network noise.

For each system, we synthesize parallelism mappings and
reduction programs for (1) a single parallelism axis; (2) all
combinations of two parallelism axes, with reduction on one
of the axes; and (3) three parallelism axes, with reduction
on the first and the third axes. We can easily scale to more
axes, though up to three axes are quite common in practical
settings, and many observations can already be illustrated.

Next, we discuss the results and insights from the experi-
ments. For space reasons, we present only representative

Parallelism
axes

Parallelism
matrix

Reduction on
the 0th axis
Ring Tree

Reduction on
the 1st axis
Ring Tree

4 nodes, each with 16 A100
A1

[
2 32

] [[
1 2
] [

4 8
]]

0.12 0.17 8.74 9.89
A2

[[
2 1
] [

2 16
]]

37.16 36.94 4.81 3.41
B1

[
4 16

] [[
1 4
] [

4 4
]]

0.15 0.20 17.70 19.03
B2

[[
2 2
] [

2 8
]]

28.77 19.81 8.39 4.99
B3

[[
4 1
] [

1 16
]]

56.13 89.70 0.18 0.22
C1

[
8 8
] [[

1 8
] [

4 2
]]

0.17 0.21 33.92 41.06
C2

[[
2 4
] [

2 4
]]

16.52 9.18 15.68 9.43
C3

[[
4 2
] [

1 8
]]

34.05 41.23 0.17 0.21
4 nodes, each with 8 V100
E1

[
8 4
] [[

1 8
] [

4 1
]]

0.28 0.39 21.74 30.42
E2

[[
2 4
] [

2 2
]]

14.25 15.48 10.98 7.34
E3

[[
4 2
] [

1 4
]]

14.84 19.90 2.96 0.43

Table 3: Reduction time in seconds of running AllReduce.

cases, and we put the full experiment results in the appendix.

4.1 Synthesizing Parallelism Placement

Result 1 (RQ 1): The performance of AllReduce differs
significantly among parallelism matrices, up to 448.5×.

The experiment results are given in Table 3. For a particular
parallelism axis (e.g., A), we compare the reduction time
for difference parallelism matrices (e.g., A1 and A2) with
each NCCL algorithm and the reduction axis. Notably, for
reducion on the 0th axis and with the Tree algorithm, B3
(89.70s) is slower than B1 (0.20s) by 448.5×.

The difference is due to the fact that different parallelism
matrices lead to different data placement. In B1, the first
row of the the matrix (

[
1 4
]
) means that devices to be re-

duced are inside a single node, where the local NVSwitch
can perform the reduction efficiently. For B3, the first row
(
[
4 1
]
) puts reduction groups across nodes, going through

the slow data-center network. However, B3 can still be use-
ful for a diffferent reduction: since it puts the 1st reduction
axis inside a single node, for a reduction on the 1st axis, B3
(0.22s on Tree) is 86.5× faster than B1 (19.03s). In prac-
tice, models with multiple parallelism forms (e.g., Shoeybi
et al. (2020)) involve reductions across both axes, and the
selection of a mapping should take all of them into account.

4.2 Synthesizing Reduction Programs

Now we turn to the reduction programs synthesized for each
parallelism matrix. Table 4 presents experiment results.

Result 2 (RQ 2): Our pruning techniques are effective for
the synthesizer to achieve fast synthesis time.

With our formalism, a program cannot be arbitrarily large,
since our carefully crafted semantics of collective operations
enforces a form of information increase for every operation.
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Result 1

The performance of AllReduce differs significantly among parallelism
matrices, up to 448.5×.Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems for Deep Learning

(a) 2 nodes, each with 16 A100 GPUs sharing one NVSwitch and
one NIC, and all NICs are connected in a data center

(b) 2 nodes, each with 8 V100 GPUs forming a ring via NVLink
and connected via PCIe switches. Each node consists of two CPUs
(each owning 4 GPUs) with one NIC to the DCN. A shared NIC
connecting the two CPUs is a modeling simplification – in reality
cross-domain communication is through shared memory.

Figure 9: System topology models for 2 nodes. For the
experiments, we run on both 2 and 4 nodes.

(i.e., AllReduce), and if so what is their form?

The experiments ran on two different GPU system configura-
tions available on Google Cloud Platform (GCP, 2021) (see
Figure 9): (i) NVIDIA A100, where each node consists of
16 GPUs sharing one NVSwitch and one NIC connecting to
the data center network; and (ii) NVIDIA Tesla V100, where
each node consists of 8 GPUs forming a ring via NVLink;
each pair of GPUs are connected via PCIe switches, and
each of the two CPUs of the node has 4 GPUS in its PCIe
domain. We experiment with both NCCL ring reduction and
tree reduction (Sanders et al., 2009), set by NCCL ALGO.

We run experiments with 2 and 4 nodes. For A100, the
system hierarchy is

[
2 16

]
or
[
4 16

]
. For V100, since the

NVLink ring connects all 8 GPUs, and the NVLink ring
has much higher bandwidth than PCIe bridges, we put 8
GPUs inside one layer, and so with 2 or 4 nodes, the system
hierarchy is

[
2 8
]

or
[
4 8
]
, respectively. Each GPU carries

a large amount of data ((229× nodes) of float32) to reduce
the impact of latency, and each program runs 10 times to
reduce the impact of network noise.

For each system, we synthesize parallelism mappings and
reduction programs for (1) a single parallelism axis; (2) all
combinations of two parallelism axes, with reduction on one
of the axes; and (3) three parallelism axes, with reduction
on the first and the third axes. We can easily scale to more
axes, though up to three axes are quite common in practical
settings, and many observations can already be illustrated.

Next, we discuss the results and insights from the experi-
ments. For space reasons, we present only representative

Parallelism
axes

Parallelism
matrix

Reduction on
the 0th axis
Ring Tree

Reduction on
the 1st axis
Ring Tree

4 nodes, each with 16 A100
A1

[
2 32

] [[
1 2
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4 8
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0.12 0.17 8.74 9.89
A2
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2 1
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37.16 36.94 4.81 3.41
B1
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1 4
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0.15 0.20 17.70 19.03
B2
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]]

28.77 19.81 8.39 4.99
B3
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4 1
] [

1 16
]]

56.13 89.70 0.18 0.22
C1

[
8 8
] [[

1 8
] [

4 2
]]

0.17 0.21 33.92 41.06
C2

[[
2 4
] [

2 4
]]

16.52 9.18 15.68 9.43
C3

[[
4 2
] [

1 8
]]

34.05 41.23 0.17 0.21
4 nodes, each with 8 V100
E1

[
8 4
] [[

1 8
] [

4 1
]]

0.28 0.39 21.74 30.42
E2

[[
2 4
] [

2 2
]]

14.25 15.48 10.98 7.34
E3

[[
4 2
] [

1 4
]]

14.84 19.90 2.96 0.43

Table 3: Reduction time in seconds of running AllReduce.

cases, and we put the full experiment results in the appendix.

4.1 Synthesizing Parallelism Placement

Result 1 (RQ 1): The performance of AllReduce differs
significantly among parallelism matrices, up to 448.5×.

The experiment results are given in Table 3. For a particular
parallelism axis (e.g., A), we compare the reduction time
for difference parallelism matrices (e.g., A1 and A2) with
each NCCL algorithm and the reduction axis. Notably, for
reducion on the 0th axis and with the Tree algorithm, B3
(89.70s) is slower than B1 (0.20s) by 448.5×.

The difference is due to the fact that different parallelism
matrices lead to different data placement. In B1, the first
row of the the matrix (

[
1 4
]
) means that devices to be re-

duced are inside a single node, where the local NVSwitch
can perform the reduction efficiently. For B3, the first row
(
[
4 1
]
) puts reduction groups across nodes, going through

the slow data-center network. However, B3 can still be use-
ful for a diffferent reduction: since it puts the 1st reduction
axis inside a single node, for a reduction on the 1st axis, B3
(0.22s on Tree) is 86.5× faster than B1 (19.03s). In prac-
tice, models with multiple parallelism forms (e.g., Shoeybi
et al. (2020)) involve reductions across both axes, and the
selection of a mapping should take all of them into account.

4.2 Synthesizing Reduction Programs

Now we turn to the reduction programs synthesized for each
parallelism matrix. Table 4 presents experiment results.

Result 2 (RQ 2): Our pruning techniques are effective for
the synthesizer to achieve fast synthesis time.

With our formalism, a program cannot be arbitrarily large,
since our carefully crafted semantics of collective operations
enforces a form of information increase for every operation.
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Result 2

The pruning techniques are effective for the synthesizer to achieve fast
synthesis time.

In the experiments, the program size limit is set to 5 for the synthesizer, which
turns out to be sufficient to generate interesting reduction patterns. With this
setup, the longest synthesis time is under 2 seconds (for up to 235 programs).
Increasing the size limit makes the synthesis slightly slower, but, for most cases,
does not generate new programs.
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Result 3

If the reduction axes can be put within one node, then a single step
AllReduce inside that node is the most performant reduction due to fast
local bandwidth.
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Result 4
Synthesized programs can mitigate the impact of parallelism placement.Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems for Deep Learning

NCCL
algo

Parallelism
axes

Synthesis
time (s)

Programs
outperforming

AllReduce / total
programs

Parallelism matrix

AllReduce
(bold if the

optimal
AllReduce)

Optimal
(bold if
overall

optimal)

Speedup

2 nodes, each with 16 A100
F1 Ring

[
8 4
]

0.03 14/47
[[
1 8
][
2 2
]]

0.17 0.17 1×
F2

[[
2 4
][
1 4
]]

16.84 9.19 1.83×
4 nodes, each with 16 A100
G1 Tree

[
4 16

]
0.04 10/53

[[
1 4
][
4 4
]]

0.20 0.17 1.17×
G2

[[
4 1
][
1 16

]]
89.70 56.13 1.60×

H1 Ring
[
16 2 2

]
0.97 25/235

[[
1 16

][
2 1
][
2 1
]]

4.79 4.63 1.03×
H2

[[
2 8
][
2 1
][
1 2
]]

4.91 3.10 1.58×
I1 Ring

[
2 2 16

]
0.93 29/235

[[
2 1
][
2 1
][
1 16

]]
4.82 2.99 1.61×

I2
[[
1 2
][
2 1
][
2 8
]]

5.28 4.77 1.11×
J1 Tree

[
64
]

1.16 5/47
[[
4 16

]]
5.75 4.74 1.21×

4 nodes, each with 8 V100
K1 Ring

[
8 2 2

]
0.24 17/188

[[
2 4
][
2 1
][
1 2
]]

4.80 2.35 2.04×
K2

[[
1 8
][
2 1
][
2 1
]]

4.40 4.40 1×
L1 Ring

[
32
]

0.06 11/47
[[
4 8
]]

4.83 3.45 1.4×

Table 4: Reduction time in seconds for running AllReduce and the synthesized optimal reduction strategy (reduction on the
0th axis for parallelism axes of size 1 and 2, and on the 0th and 2rd axes for parallelism axes of size 3).

In our experiments, we set 5 as the program size limit for
the synthesizer, which turns out to be sufficient to generate
interesting reduction patterns. With this setup, the longest
synthesis time is under 2 seconds (for up to 235 programs).
Increasing the size limit makes the synthesis slightly slower,
but, for most cases, does not generate new programs.

Result 3 (RQ 3): If the reduction axes can be put within
one node, then a single step AllReduce inside that node is
the most performant reduction due to fast local bandwidth.

We observe this result from the difference between F1 and
F2. F1 assigns the reduction axis to the GPU level, and thus
AllReduce is the most performant reduction, outperforming
F2, which requires cross-node reduction, by 99.06×.

Result 4 (RQ3): Synthesized programs can help mitigate
the impact of parallelism placement.

Consider G1 and G2. As discussed before, G2’s AllReduce
(89.7s) is 448.5× slower than G1 (0.20s). Synthesized
programs have helped bridge the gap: G2’s optimal program
is only 330.2× slower. However, the performance difference
here is significant and the help is limited. The case of H1
and H2 is more interesting: H1’s AllReduce is 1.03× slower
than H2, but its optimal program is 1.49× faster than H2!

On the other hand, it is also possible that synthesis aggra-
vates the impact of parallelism placement. For example, for
I1 and I2, the performance difference jumps from 1.10× for
AllReduce to 1.60× for the optimal program.

Result 5 (RQ3): For reduction across nodes, a topology-
aware reduction program tends to outperform a single step
AllReduce, with speedup on average 1.28×, upto 2.04×.

(i) Reduce-AllReduce-Broadcast (ii) ReduceScatter-AllReduce-AllGather

Figure 10: Common optimal reduction programs

Table 4 shows that when cross-node communication is
needed the optimal program tends to outperform AllReduce.
For example, the speedup is 1.84× in F2, and 2.04× in K2.
For 69% of all mappings across both systems, synthesized
programs outperform AllReduce by 1.27× on average.

We present common optimal reduction programs applied
to our running examples (Section 2) in Figure 10. (i) Fig-
ure 10i first reduces local data to a root device, performs
AllReduce between root devices, and broadcasts the result
from the root device to each device. (ii) Figure 10ii first
performs ReduceScatter between local devices, and then
AllReduce between remote devices, and finally AllGather
between local devices. Both reduction programs utilize the
topology, by performing local communication first, which
is often more efficient due to local high bandwidth. Now,
the data to be reduced across nodes in the intermediate step
is significantly smaller. The final step is again local commu-
nication. Thus, the reduction programs have overall better
performance than AllReduce. It turns out that both reduc-
tion programs have been recently proposed: program (i)
has been used in Goyal et al. (2018); Jia et al. (2018a), and
program (ii) has been proposed by Cho et al. (2019).

Furthermore, the experiments suggest that program (ii) is
more often the optimal one and outperforms (i) by a larger



Content Introduction Design Overview Synthesis Algorithm Experiments Summary

Result 5

For reduction across nodes, a topology-aware reduction program tends
to outperform a single step AllReduce, with speedup on average 1.28×,
upto 2.04×.
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Optimal strategies found by P 2

For ResNet-50 model, P 2 found the optimal strategy (ii) that achieves 15%
overall training time speedup compared to the baseline (Haiku).

Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems for Deep Learning

NCCL
algo

Parallelism
axes

Synthesis
time (s)

Programs
outperforming

AllReduce / total
programs

Parallelism matrix

AllReduce
(bold if the

optimal
AllReduce)

Optimal
(bold if
overall

optimal)

Speedup

2 nodes, each with 16 A100
F1 Ring

[
8 4
]

0.03 14/47
[[
1 8
][
2 2
]]

0.17 0.17 1×
F2

[[
2 4
][
1 4
]]

16.84 9.19 1.83×
4 nodes, each with 16 A100
G1 Tree

[
4 16

]
0.04 10/53
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1 4
][
4 4
]]

0.20 0.17 1.17×
G2

[[
4 1
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1 16
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89.70 56.13 1.60×

H1 Ring
[
16 2 2
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0.97 25/235
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I1 Ring
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I2
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J1 Tree
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4.80 2.35 2.04×
K2

[[
1 8
][
2 1
][
2 1
]]
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0.06 11/47
[[
4 8
]]

4.83 3.45 1.4×

Table 4: Reduction time in seconds for running AllReduce and the synthesized optimal reduction strategy (reduction on the
0th axis for parallelism axes of size 1 and 2, and on the 0th and 2rd axes for parallelism axes of size 3).

In our experiments, we set 5 as the program size limit for
the synthesizer, which turns out to be sufficient to generate
interesting reduction patterns. With this setup, the longest
synthesis time is under 2 seconds (for up to 235 programs).
Increasing the size limit makes the synthesis slightly slower,
but, for most cases, does not generate new programs.

Result 3 (RQ 3): If the reduction axes can be put within
one node, then a single step AllReduce inside that node is
the most performant reduction due to fast local bandwidth.

We observe this result from the difference between F1 and
F2. F1 assigns the reduction axis to the GPU level, and thus
AllReduce is the most performant reduction, outperforming
F2, which requires cross-node reduction, by 99.06×.

Result 4 (RQ3): Synthesized programs can help mitigate
the impact of parallelism placement.

Consider G1 and G2. As discussed before, G2’s AllReduce
(89.7s) is 448.5× slower than G1 (0.20s). Synthesized
programs have helped bridge the gap: G2’s optimal program
is only 330.2× slower. However, the performance difference
here is significant and the help is limited. The case of H1
and H2 is more interesting: H1’s AllReduce is 1.03× slower
than H2, but its optimal program is 1.49× faster than H2!

On the other hand, it is also possible that synthesis aggra-
vates the impact of parallelism placement. For example, for
I1 and I2, the performance difference jumps from 1.10× for
AllReduce to 1.60× for the optimal program.

Result 5 (RQ3): For reduction across nodes, a topology-
aware reduction program tends to outperform a single step
AllReduce, with speedup on average 1.28×, upto 2.04×.

(i) Reduce-AllReduce-Broadcast (ii) ReduceScatter-AllReduce-AllGather

Figure 10: Common optimal reduction programs

Table 4 shows that when cross-node communication is
needed the optimal program tends to outperform AllReduce.
For example, the speedup is 1.84× in F2, and 2.04× in K2.
For 69% of all mappings across both systems, synthesized
programs outperform AllReduce by 1.27× on average.

We present common optimal reduction programs applied
to our running examples (Section 2) in Figure 10. (i) Fig-
ure 10i first reduces local data to a root device, performs
AllReduce between root devices, and broadcasts the result
from the root device to each device. (ii) Figure 10ii first
performs ReduceScatter between local devices, and then
AllReduce between remote devices, and finally AllGather
between local devices. Both reduction programs utilize the
topology, by performing local communication first, which
is often more efficient due to local high bandwidth. Now,
the data to be reduced across nodes in the intermediate step
is significantly smaller. The final step is again local commu-
nication. Thus, the reduction programs have overall better
performance than AllReduce. It turns out that both reduc-
tion programs have been recently proposed: program (i)
has been used in Goyal et al. (2018); Jia et al. (2018a), and
program (ii) has been proposed by Cho et al. (2019).

Furthermore, the experiments suggest that program (ii) is
more often the optimal one and outperforms (i) by a larger
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Summary
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Conclusion

Strength

▶ Jointly optimize the parallelism placement and reduction strategy for
hierarchical topologies.

▶ Formalize the collective semantics to automatically search for valid
programs.

Limitation

▶ Only strictly symmetric and hierarchical topologies are considered.

▶ The optimal reduction strategy is simple and has already been studied.

▶ Why not take a step further and also consider the parallelism strategy?
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Takeaways

▶ Operation synthesis
▶ Communication synthesis: transform a single collective operation into

multiple smaller operations. (P 2, BlueConnect, SCCL, etc.)
▶ Computation synthesis: transform a computation operation into multiple

smaller operations. (TASO, DietCode, etc.)
▶ Parallelism strategy synthesis: transform a computation operation into a

series of communication and computation operations.

▶ Define the state of the system and treat operations as directed links (with
costs) that connect states.



Thank you!
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