
Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Accelerating Large-Scale Distributed Neural Network

Training with SPMD Parallelism

Shiwei Zhang1 Lansong Diao2 Chuan Wu1 Siyu Wang2 Wei Lin2

1The University of Hong Kong
2Alibaba Group

ACM SoCC 2022



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Deep neural networks (DNN), especially Transformer-based models with
Mixture-of-Expert (MoE) layers, have become so large that distributed
training is necessary.

Communication overhead is a major problem in distributed DNN training. Using
TPUs with fast device-to-device links, communication can take up to 11% of
training time. On GPU clouds with Ethernet connection, communication can
take more than 60% of training time.

We present our system, HiDup, that mitigates the communication overhead by
computation-communication overlapping and overlapping-aware sharding
strategy.



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Content

▶ Background and Motivation

▶ Duplex

▶ Sharding Strategy

▶ Implementation

▶ Evaluation

▶ Conclusion



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Background and Motivation



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Data Parallelism

With data parallelism (DP), a
minibatch of training data is split along
the batch size dimension and each
worker processes a slice independently.
All-Reduce is used to synchonize the
grandients at the end of each iteration.

X

(B, H1)

MatMul

W
(H1, H2)

Z

(B, H2)

∇Z

(B, H2)

W
(H1, H2)

MatMul

Back

∇X

(B, H1)

∇W

(H1, H2)

X

(B, H1)

Loss

X

(B/d, H1)

MatMul

W

(H1, H2)

Z

(B/d, H2)

∇Z

(B/d, H2)

W

(H1, H2)

MatMul

Back

∇X

(B/d, H1)

∇W

(H1, H2)

∇W

(H1, H2)

All-

Reduce

Loss

X

(B/d, H1)

X

(B/d, H1)

MatMul

W

(H1, H2)

Z

(B/d, H2)

∇Z

(B/d, H2)

W

(H1, H2)

MatMul

Back

∇X

(B/d, H1)

∇W

(H1, H2)

∇W

(H1, H2)

All-

Reduce

Loss

X

(B/d, H1)

GPU0

GPU1



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

SPMD Parallelism

DP does not support models that exceed the memory of a single device. SPMD
parallelism is a more general method that allows sharding along any dimension of
any tensor. Collective communication is needed when the sharding methods of
two tensors are incompatible.

X

(B/d, H1)

MatMul

W
(H1/d, H2)

Z

(B, H2)

∇Z

(B, H2)

W
(H1/d, H2)

MatMul

Back

∇X

(B, H1/d)

∇W

(H1/d, H2)

Loss

X

(B, H1/d)

All-To-
All

X

(B, H1/d)

Reduce-

Scatter

Z

(B/d, H2)

All-

Gather

All-To-
All

∇X

(B/d, H1)

∇Z

(B/d, H2)

X

(B/d, H1)

MatMul

W
(H1/d, H2)

Z

(B, H2)

∇Z

(B, H2)

W
(H1/d, H2)

MatMul

Back

∇X

(B, H1/d)

∇W

(H1/d, H2)

Loss

X

(B, H1/d)

All-To-
All

X

(B, H1/d)

Reduce-

Scatter

Z

(B/d, H2)

All-

Gather

All-To-
All

∇X

(B/d, H1)

∇Z

(B/d, H2)

GPU0

GPU1



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

SPMD Parallelism ExamplesMegatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

require any new compiler or code re-writing, and can be
fully implemented by inserting a few simple primitives, as
described in the next section.

3. Model Parallel Transformers
We take advantage of the structure of transformer networks
to create a simple model parallel implementation by adding a
few synchronization primitives. A transformer layer consists
of a self attention block followed by a two-layer, multi-layer
perceptron (MLP) as shown in Figure 2. We introduce
model parallelism in both of these blocks separately.

We start by detailing the MLP block. The first part of the
block is a GEMM followed by a GeLU nonlinearity:

Y = GeLU(XA) (1)

One option to parallelize the GEMM is to split the weight
matrix A along its rows and input X along its columns as:

X = [X1, X2], A =

[
A1

A2

]
. (2)

This partitioning will result in Y = GeLU(X1A1 +
X2A2). Since GeLU is a nonlinear function, GeLU(X1A1+
X2A2) 6= GeLU(X1A1)+GeLU(X2A2) and this approach
will require a synchronization point before the GeLU func-
tion.

Another option is to splitA along its columnsA = [A1, A2].
This partitioning allows the GeLU nonlinearity to be inde-
pendently applied to the output of each partitioned GEMM:

[Y1, Y2] = [GeLU(XA1),GeLU(XA2)] (3)

This is advantageous as it removes a synchronization point.
Hence, we partition the first GEMM in this column parallel
fashion and split the second GEMM along its rows so it takes
the output of the GeLU layer directly without requiring any
communication as shown in Figure 3a. The output of the
second GEMM is then reduced across the GPUs before
passing the output to the dropout layer. This approach splits
both GEMMs in the MLP block across GPUs and requires
only a single all-reduce operation in the forward pass (g
operator) and a single all-reduce in the backward pass (f
operator). These two operators are conjugates of each other
and can be implemented in PyTorch with only a few lines of
code. As an example, the implementation of the f operator
is provided below:
class f(torch.autograd.Function):

def forward(ctx, x):
return x

def backward(ctx, gradient):
all_reduce(gradient)
return gradient

Code 1. Implementation of f operator. g is similar to f with
identity in the backward and all-reduce in the forward
functions.

(a) MLP

(b) Self-Attention

Figure 3. Blocks of Transformer with Model Parallelism. f and g
are conjugate. f is an identity operator in the forward pass and all
reduce in the backward pass while g is an all reduce in the forward
pass and identity in the backward pass.

As shown in Figure 3b, for the self attention block we exploit
inherent parallelism in the multihead attention operation,
partitioning the GEMMs associated with key (K), query
(Q), and value (V ) in a column parallel fashion such that
the matrix multiply corresponding to each attention head is
done locally on one GPU. This allows us to split per atten-
tion head parameters and workload across the GPUs, and
doesnt require any immediate communication to complete
the self-attention. The subsequent GEMM from the output
linear layer (after self attention) is parallelized along its
rows and takes the output of the parallel attention layer di-
rectly, without requiring communication between the GPUs.
This approach for both the MLP and self attention layer
fuses groups of two GEMMs, eliminates a synchronization
point in between, and results in better scaling. This enables
us to perform all GEMMs in a simple transformer layer
using only two all-reduces in the forward path and two in
the backward path (see Figure 4).

The transformer language model has an output embedding
with the dimension of hidden-size (H) times vocabulary-
size (v). Since the vocabulary size is on the order of tens
of thousands of tokens for modern language models (for
example, GPT-2 used a vocabulary size of 50,257), it is ben-
eficial to parallelize the output embedding GEMM. How-
ever, in transformer language models, the output embed-
ding layer shares weights with the input embedding, requir-
ing modifications to both. We parallelize the input embed-
ding weight matrix EH×v along the vocabulary dimension
E = [E1, E2] (column-wise). Since each partition now only

Source: Shoeybi, M., et al. “Megatron-LM” (2019).
Figure 3: Illustration of scaling of Transformer Encoder with MoE Layers. The MoE layer replaces
the every other Transformer feed-forward layer. Decoder modification is similar. (a) The encoder of
a standard Transformer model is a stack of self-attention and feed forward layers interleaved with
residual connections and layer normalization. (b) By replacing every other feed forward layer with
a MoE layer, we get the model structure of the MoE Transformer Encoder. (c) When scaling to
multiple devices, the MoE layer is sharded across devices, while all other layers are replicated.

where xs is the input token to the MoE layer, wiand wobeing the input and output projection matrices
for the feed-forward layer (an expert). Vector Gs,E is computed by a gating network. Gs,E has one
non-negative for each expert, most of which are zeros meaning the token is not dispatched to that
expert. The token is dispatched to a very small number of experts. We choose to let each token
dispatched to at most two experts. The corresponding entries in Gs,E are non-zeros, representing
how much an expert contributes to the final network output. Every expert FFNe applies to xs a
fully-connected 2-layer network using ReLU [29] activation function. The output of the MoE layer,
ys, is the weighted average of outputs from all the selected experts.

The gating function GATE(·) is critical to the MoE layer, which is modeled by a softmax activation
function to indicate the weights of each expert in processing incoming tokens. In other words, to
indicate how good an expert is at processing the incoming token. Furthermore, the gating function
must satisfy two goals:

• Balanced load It is desirable that the MoE layer to sparsely activate the experts for a given
token. A naive solution would be just to choose the top-k experts according to the softmax
probability distribution. However, it is known that this approach leads to load imbalance
problem for training [16]: most tokens seen during training would have been dispatched to a
small number of experts, amassing a very large input buffer for only a few (busy) experts
leaving other experts untrained, slowing down the training. Meanwhile many other experts
do not get sufficiently trained at all. A better design of the gating function would distribute
processing burden more evenly across all experts.

• Efficiency at scale It would be rather trivial to achieve a balanced load if the gating function
is done sequentially. The computation cost for the gating function alone is at least O(NE)
for all N tokens in the input batch given E experts. However, in our study, N is in the order
of millions and E is in the order of thousands, a sequential implementation of the gating
function would keep most of the computational resources idle most of the time. Therefore,
we need an efficient parallel implementation of the gating function to leverage many devices.

5

Source: Lepikhin, D., et al. “GShard” (2020).



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Duplex: Enable Computation-Communication

Overlapping with SPMD Parallelism



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Duplex

Inspired by gradient accumulation, we split
the input data on each worker into two
microbatches after applying SPMD
parallelism, and scheduling the two
microbatches into a pipeline such that the
computation of one microbatch overlaps
with the communication of the other
microbatch.

Attention All-To-All MoE All-To-All

Attention All-To-All MoE All-To-All Attention All-To-All MoE All-To-All

Attention All-To-All MoE All-To-All

Attention All-To-All MoE All-To-All

Duplicate

Microbatch 1 Microbatch 2

Microbatch 1

Microbatch 2

Duplex

Time



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Duplex Example

X

(B/2d, H1)

MatMul

W
(H1/d, H2)

Z

(B/2, H2)

∇Z

(B/2, H2)

W
(H1/d, H2)

MatMul

Back

∇X

(B/2, H1/d)

∇W

(H1/d, H2)

Loss

X

(B/2, H1/d)

All-To-
All

X

(B/2, H1/d)

Reduce-

Scatter

Z
(B/2d, H2)

All-

Gather

All-To-
All

∇X

(B/2d, H1)

∇Z

(B/2d, H2)

X

(B/2d, H1)

MatMul

W
(H1/d, H2)

Z

(B/2, H2)

∇Z

(B/2, H2)

W
(H1/d, H2)

MatMul

Back

∇X

(B/2, H1/d)

∇W

(H1/d, H2)

Loss

X

(B/2, H1/d)

All-To-
All

X

(B/2, H1/d)

Reduce-

Scatter

Z
(B/2d, H2)

All-

Gather

All-To-
All

∇X

(B/2d, H1)

∇Z

(B/2d, H2)

+

∇W

(H1/d, H2)

X

(B/2d, H1)

MatMul

W
(H1/d, H2)

Z

(B/2, H2)

∇Z

(B/2, H2)

W
(H1/d, H2)

MatMul

Back

∇X

(B/2, H1/d)

∇W

(H1/d, H2)

Loss

X

(B/2, H1/d)

All-To-
All

X

(B/2, H1/d)

Reduce-

Scatter

Z
(B/2d, H2)

All-

Gather

All-To-
All

∇X

(B/2d, H1)

∇Z

(B/2d, H2)

X

(B/2d, H1)

MatMul

W
(H1/d, H2)

Z

(B/2, H2)

∇Z

(B/2, H2)

W
(H1/d, H2)

MatMul

Back

∇X

(B/2, H1/d)

∇W

(H1/d, H2)

Loss

X

(B/2, H1/d)

All-To-
All

X

(B/2, H1/d)

Reduce-

Scatter

Z
(B/2d, H2)

All-

Gather

All-To-
All

∇X

(B/2d, H1)

∇Z

(B/2d, H2)

+

∇W

(H1/d, H2)

GPU0
GPU1



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Duplex

▶ Accuracy: Only floating-point arithmetic errors.

▶ Memory Usage: No increase.

▶ GPU Utilization: Slightly reduced due to smaller tensor sizes.

▶ Overheads: CUDA synchonization, gradient aggregation, memory bus
contention, interference between computation and communication.

▶ Speed-up: Up to 100% in ideal case.



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Duplex-aware Sharding Strategy



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Motivation

With the fast emergence of new DNN models, manually designing SPMD
strategies for each model is manpower intensive and time-consuming. Further,
the strategy may not always be optimal on different clusters.

Existing studies search for sharding strategy that minimizes communication
volume. This strategy may not be optimal when used together with Duplex.



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Sharding Strategy

▶ Objective: Find the sharding methods for all operators that minimizes the
training time with computation-communication overlapping.

▶ Basic Idea: Using dynamic programming to incrementally search for the
best strategies of a subgraph.

▶ Challenge: The best strategy of a subgraph may not be optimal for the
complete graph due to computation-communication overlapping.

▶ Solution: We propose a stage-based cost model and track two costs
associated with a search state.



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Sharding Strategy
SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Shiwei Zhang, Lansong Diao, Chuan Wu, Siyu Wang, and Wei Lin

Microbatch 2

Stage i

max{-ϕQ(i-1), comm(i)}

ψQ(i-1)

ψQ(i)

ψQ(i-1) + ϕQ(i-1)

max{comm(i), comp(i)}

-ϕQ(i) = comp(i)

MatMul Reduce-
Scatter Loss

MatMul Reduce-
Scatter Loss

Stage i-1

Microbatch 1 All-To-All

All-To-All

Stage iStage i-1

Time

Figure 3: An illustration of the cost model.

the recursive computation in (4) and (5) in our dynamic
programming algorithm, to identify the strategy minimizing
the completion time of training both microbatches. In our
strategy search, we need to preserve any strategy that is not
dominated by other strategies [29], in terms of the two costs
computed in (4) and (5) with the strategy. We define that
strategy 𝑄1 dominates 𝑄2 if they reach the same state, while
𝑄1 is better in terms of both costs, i.e.:

𝑄1 dominates 𝑄2 ⇐⇒




state(𝑄1) = state(𝑄2)
𝜓𝑄1 ≤ 𝜓𝑄2

𝜙𝑄1 ≤ 𝜙𝑄2

𝜓𝑄1 < 𝜓𝑄2 or 𝜙𝑄1 < 𝜙𝑄2

The minimal time required to execute the remaining part
of the graph from cut 𝐶 to the loss node depends only on
the forms of tensors in 𝐶 (as we can treat the remaining
part as a standalone model and tensors in 𝐶 are its inputs).
Therefore, if two strategies reach the same state 𝑇 , one can
be regarded as strictly better than the other if it takes a
shorter time to reach the state and brings more overlapping
potential between the two microbatches’ training (indicated
by longer computation time in the last stage of the strategy).
We formalize the idea in Theorem 1. The proof is provided
in a technical report.

Theorem 1. 𝑄 ⊈ 𝑄∗ if ∃𝑄 ′ such that 𝑄′ dominates 𝑄 .

Exploiting the result in Theorem 1, we propose an effi-
cient dynamic programming algorithm to find the optimal
strategy𝑄∗ for a computation graph𝐺 , as given in Fig. 4. We
iterate through all possible cuts 𝐶0, . . . ,𝐶𝑛 in the graph in
an order that ensures that ∀𝑒1 ∈ 𝐶𝑖 , ∀𝑒2 ∈ 𝐶 𝑗 , 𝑖 < 𝑗 , 𝑒1 ≠ 𝑒2,
there is no path from 𝑒2 to 𝑒1. The cuts can be enumerated
with breadth-first search: starting with a set 𝑅 that contains
only the input nodes, we enumerate nodes whose input ten-
sors are produced by nodes in 𝑅 (as a set 𝐽 ) and try to add a
different node in 𝐽 into 𝑅 each time. The tensors produced
by nodes in 𝑅 and consumed by nodes not in 𝑅 form a cut.
The number of possible cuts is exponential to the maximum

1: Input: Computation graph 𝐺
2: Output: Optimal SPMD strategy 𝑄∗

3: Initialize 𝑃 with an empty strategy 𝑄∅
4: for 𝐶 = 𝐶0 to 𝐶𝑛 do
5: for 𝑄 ∈ 𝑃 where 𝐶 ∈ state(𝑄) do
6: for each (𝑂, 𝑆) that can be appended to 𝑄 do
7: 𝑄′ ← 𝑄 ⊕ (𝑂, 𝑆)
8: if ∃𝑄𝑝 ∈ 𝑃 s.t. state(𝑄𝑝 ) = state(𝑄 ′) and 𝑄 ′ is

dominated by 𝑄𝑝 then
9: continue
10: end if
11: for 𝑄𝑝 ∈ 𝑃 where state(𝑄𝑝 ) = state(𝑄 ′) do
12: if 𝑄𝑝 is dominated by 𝑄′ then
13: remove 𝑄𝑝 from 𝑃
14: end if
15: end for
16: append 𝑄′ into 𝑃
17: end for
18: end for
19: end for
20: return 𝑄∗ = arg min

𝑄∈𝑃,state(𝑄 )=𝑇
𝜓𝑄

Figure 4: SPMD Strategy Search Algorithm

number of nodes in 𝐽 , which is 10 in our experiments. For
each cut, we enumerate possible combinations of operators
𝑂 and their signatures 𝑆 to form stages (𝑂, 𝑆), that can reach
a state including this cut and can be appended to the Pareto
optimal strategies 𝑃 (set of strategies that are not dominated
by any other strategies). We only keep a strategy if it is not
dominated by any other strategies (lines 8–10), and elimi-
nate any strategies that are dominated by it (lines 11–15).
Finally, we decide 𝑄∗ as the complete strategy achieving the
smallest𝜓𝑄 , which is the end-to-end training time of the two
microbatches (line 20).

5 IMPLEMENTATION
We implement HiDup as a graph transformation module
on PyTorch [24], as shown in Fig. 5. HiDup takes as input
a single-card PyTorch DNN model (as a PyTorch fx [28]
graph) and the cluster specification (number of GPUs, inter-
connection bandwidth, etc.), and produces a model that can
run on multiple GPUs. HiDup consists of three components.
Annotator. The annotator adds metadata to each node in
the computation graph, including operator signatures, esti-
mated computation time, and the output size. For each node,
the output tensor size is inferred according to the sizes of
input tensors. Possible signatures of an operator are derived
according to the inputs and the operator type. The compu-
tation time of an operator is estimated using the number
of floating-point operations required for the operator. We
profile small models (e.g., a model with a reduced number of

More details in the paper.

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Shiwei Zhang, Lansong Diao, Chuan Wu, Siyu Wang, and Wei Lin

Microbatch 2

Stage i

max{-ϕQ(i-1), comm(i)}

ψQ(i-1)

ψQ(i)

ψQ(i-1) + ϕQ(i-1)

max{comm(i), comp(i)}

-ϕQ(i) = comp(i)

MatMul Reduce-
Scatter Loss

MatMul Reduce-
Scatter Loss

Stage i-1

Microbatch 1 All-To-All

All-To-All

Stage iStage i-1

Time

Figure 3: An illustration of the cost model.

the recursive computation in (4) and (5) in our dynamic
programming algorithm, to identify the strategy minimizing
the completion time of training both microbatches. In our
strategy search, we need to preserve any strategy that is not
dominated by other strategies [29], in terms of the two costs
computed in (4) and (5) with the strategy. We define that
strategy 𝑄1 dominates 𝑄2 if they reach the same state, while
𝑄1 is better in terms of both costs, i.e.:

𝑄1 dominates 𝑄2 ⇐⇒




state(𝑄1) = state(𝑄2)
𝜓𝑄1 ≤ 𝜓𝑄2

𝜙𝑄1 ≤ 𝜙𝑄2

𝜓𝑄1 < 𝜓𝑄2 or 𝜙𝑄1 < 𝜙𝑄2

The minimal time required to execute the remaining part
of the graph from cut 𝐶 to the loss node depends only on
the forms of tensors in 𝐶 (as we can treat the remaining
part as a standalone model and tensors in 𝐶 are its inputs).
Therefore, if two strategies reach the same state 𝑇 , one can
be regarded as strictly better than the other if it takes a
shorter time to reach the state and brings more overlapping
potential between the two microbatches’ training (indicated
by longer computation time in the last stage of the strategy).
We formalize the idea in Theorem 1. The proof is provided
in a technical report.

Theorem 1. 𝑄 ⊈ 𝑄∗ if ∃𝑄 ′ such that 𝑄′ dominates 𝑄 .

Exploiting the result in Theorem 1, we propose an effi-
cient dynamic programming algorithm to find the optimal
strategy𝑄∗ for a computation graph𝐺 , as given in Fig. 4. We
iterate through all possible cuts 𝐶0, . . . ,𝐶𝑛 in the graph in
an order that ensures that ∀𝑒1 ∈ 𝐶𝑖 , ∀𝑒2 ∈ 𝐶 𝑗 , 𝑖 < 𝑗 , 𝑒1 ≠ 𝑒2,
there is no path from 𝑒2 to 𝑒1. The cuts can be enumerated
with breadth-first search: starting with a set 𝑅 that contains
only the input nodes, we enumerate nodes whose input ten-
sors are produced by nodes in 𝑅 (as a set 𝐽 ) and try to add a
different node in 𝐽 into 𝑅 each time. The tensors produced
by nodes in 𝑅 and consumed by nodes not in 𝑅 form a cut.
The number of possible cuts is exponential to the maximum

1: Input: Computation graph 𝐺
2: Output: Optimal SPMD strategy 𝑄∗

3: Initialize 𝑃 with an empty strategy 𝑄∅
4: for 𝐶 = 𝐶0 to 𝐶𝑛 do
5: for 𝑄 ∈ 𝑃 where 𝐶 ∈ state(𝑄) do
6: for each (𝑂, 𝑆) that can be appended to 𝑄 do
7: 𝑄′ ← 𝑄 ⊕ (𝑂, 𝑆)
8: if ∃𝑄𝑝 ∈ 𝑃 s.t. state(𝑄𝑝 ) = state(𝑄 ′) and 𝑄 ′ is

dominated by 𝑄𝑝 then
9: continue
10: end if
11: for 𝑄𝑝 ∈ 𝑃 where state(𝑄𝑝 ) = state(𝑄 ′) do
12: if 𝑄𝑝 is dominated by 𝑄′ then
13: remove 𝑄𝑝 from 𝑃
14: end if
15: end for
16: append 𝑄′ into 𝑃
17: end for
18: end for
19: end for
20: return 𝑄∗ = arg min

𝑄∈𝑃,state(𝑄 )=𝑇
𝜓𝑄

Figure 4: SPMD Strategy Search Algorithm

number of nodes in 𝐽 , which is 10 in our experiments. For
each cut, we enumerate possible combinations of operators
𝑂 and their signatures 𝑆 to form stages (𝑂, 𝑆), that can reach
a state including this cut and can be appended to the Pareto
optimal strategies 𝑃 (set of strategies that are not dominated
by any other strategies). We only keep a strategy if it is not
dominated by any other strategies (lines 8–10), and elimi-
nate any strategies that are dominated by it (lines 11–15).
Finally, we decide 𝑄∗ as the complete strategy achieving the
smallest𝜓𝑄 , which is the end-to-end training time of the two
microbatches (line 20).

5 IMPLEMENTATION
We implement HiDup as a graph transformation module
on PyTorch [24], as shown in Fig. 5. HiDup takes as input
a single-card PyTorch DNN model (as a PyTorch fx [28]
graph) and the cluster specification (number of GPUs, inter-
connection bandwidth, etc.), and produces a model that can
run on multiple GPUs. HiDup consists of three components.
Annotator. The annotator adds metadata to each node in
the computation graph, including operator signatures, esti-
mated computation time, and the output size. For each node,
the output tensor size is inferred according to the sizes of
input tensors. Possible signatures of an operator are derived
according to the inputs and the operator type. The compu-
tation time of an operator is estimated using the number
of floating-point operations required for the operator. We
profile small models (e.g., a model with a reduced number of



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Implementation



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Implementation

We implement HiDup as a graph transformation module on PyTorch. It takes as
input a single-card model (as PyTorch fx graph) and the cluster specification,
producing a modified graph that runs on all workers.

PyTorch Code

Single-Card Model
Strategy Searcher

Annotator

Compiler

Distributed Model

HiDup

Cluster Specification



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Implementation

▶ Annotator: Label the possible sharding methods for each operator, infer
the tensor sizes, and estimate the FLOPs.

▶ Strategy Searcher: Take annotated graph as input and search for the
optimal sharding strategy.

▶ Compiler: Modify the graph according to the strategy and applies Duplex.



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Evaluation



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Experimental Setup

▶ Testbed: 8 machines on public cloud, each with 8 V100 GPUs and NVLink,
connected by 10Gbps network.

▶ Benchmarks: BERT (language modeling) and ViT (image classification),
with two variants of MoE layers, SGMoE and Switch.

▶ Baselines: DeepSpeed, FastMoE, PyTorch DDP, and Horovod.



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Per-iteration training time
SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Shiwei Zhang, Lansong Diao, Chuan Wu, Siyu Wang, and Wei Lin

8 16 32 640

1

2

Number of GPUs

Pe
r-
ite

ra
tio

n
tim

e
(s)

BERT-SGMoE

8 16 32 640

1

2

Number of GPUs

BERT-Switch

8 16 32 640

1

2

Number of GPUs

ViT-SGMoE

8 16 32 640

1

2

Number of GPUs

ViT-Switch

HiDup DeepSpeed FastMoE

Figure 6: Per-iteration training time comparison: 8-machine cluster. Missing data are due to OOM errors.

2 4 80

0.2

0.4

Number of GPUs

Pe
r-
ite

ra
tio

n
tim

e
(s)

BERT-SGMoE

2 4 80

0.2

0.4

Number of GPUs

BERT-Switch

2 4 80

0.05

0.1

0.15

Number of GPUs

ViT-SGMoE

2 4 80

0.05

0.1

0.15

Number of GPUs

ViT-Switch

HiDup DeepSpeed FastMoE Horovod PyTorch DDP

Figure 7: Per-iteration training time comparison: single machine. Missing data are due to OOM errors.

through our experiments that setting it to the total number
of GPUs always gives the best result.

Pure DP-based methods do not support MoE model train-
ing at large scale due to replicating every expert on every
device and that the number of experts is proportional to the
number of GPUs in the standard MoE settings. We hence
only include PyTorch DDP and Horovod in single-machine
experiments.
EvaluationMethod.HiDup and the baselines do not change
the training semantics (i.e., producing the same gradients as
training over single-card models with only floating-point er-
rors), such that the number of iterations required for model
convergence to specified accuracies remains the same as
single-card training. Therefore, our comparison of per-iteration
training time reflects that of the end-to-end training time.
Under each configuration, we train the respective model for
100 iterations and show the average time of the last 50 itera-
tions. The pre-training overheads of the evaluated systems,
such as the fused operator compilation in DeepSpeed and
strategy search in HiDup, are within tens of seconds and
negligible compared to the DNN training time.

6.2 Scalability
We first evaluate the per-iteration training time of HiDup as
compared to baselines on up to 64 GPUs across 8 machines.
Fig. 6 shows that similar performance is achieved among

HiDup, FastMoE, andDeepSpeedwhen training BERT-SGMoE
and BERT-Switch with up to 16 GPUs, while HiDup achieves
up to 18% speed-up as compared to the best baseline when
more GPUs are in use. This is because when we add more de-
vices, collective communication becomes slower due to band-
width contention. Compared with FastMoE and DeepSpeed,
our duplex design can mitigate the increased communication
overhead by overlapping computation and communication,
achieving better results.
Benefited from its optimized implementation, FastMoE

achieves the best performance in 8-GPU training, but is
bottlenecked by communication with more GPUs. It also
experiences OOM in 64-GPU training, due to the lack of per-
expert processing capacity limit. DeepSpeed’s MoE module
shows a similar scaling trend as HiDup, but is consistently
slower than HiDup as it does not overlap computation and
communication.

When training ViT-SGMoE andViT-Switch, HiDup achieves
significantly better performance (up to 61% faster) than the
baselines. Computation time and communication time in
these models are closer to each other and HiDup can achieve
higher overlapping ratios.

6.3 Single-Machine Performance
We also evaluate HiDup in a single machine of 8 GPUs,
which represents a high-bandwidth inter-connect scenario

HiDup outperforms baselines when scaling up, because the collective
communication becomes slower with more cards and HiDup can mitigate the
increased communication overhead with our Duplex design.



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Single Machine Performance

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Shiwei Zhang, Lansong Diao, Chuan Wu, Siyu Wang, and Wei Lin

8 16 32 640

1

2

Number of GPUs
Pe
r-
ite

ra
tio

n
tim

e
(s)

BERT-SGMoE

8 16 32 640

1

2

Number of GPUs

BERT-Switch

8 16 32 640

1

2

Number of GPUs

ViT-SGMoE

8 16 32 640

1

2

Number of GPUs

ViT-Switch

HiDup DeepSpeed FastMoE

Figure 6: Per-iteration training time comparison: 8-machine cluster. Missing data are due to OOM errors.

2 4 80

0.2

0.4

Number of GPUs

Pe
r-
ite

ra
tio

n
tim

e
(s)

BERT-SGMoE

2 4 80

0.2

0.4

Number of GPUs

BERT-Switch

2 4 80

0.05

0.1

0.15

Number of GPUs

ViT-SGMoE

2 4 80

0.05

0.1

0.15

Number of GPUs

ViT-Switch

HiDup DeepSpeed FastMoE Horovod PyTorch DDP

Figure 7: Per-iteration training time comparison: single machine. Missing data are due to OOM errors.

through our experiments that setting it to the total number
of GPUs always gives the best result.

Pure DP-based methods do not support MoE model train-
ing at large scale due to replicating every expert on every
device and that the number of experts is proportional to the
number of GPUs in the standard MoE settings. We hence
only include PyTorch DDP and Horovod in single-machine
experiments.
EvaluationMethod.HiDup and the baselines do not change
the training semantics (i.e., producing the same gradients as
training over single-card models with only floating-point er-
rors), such that the number of iterations required for model
convergence to specified accuracies remains the same as
single-card training. Therefore, our comparison of per-iteration
training time reflects that of the end-to-end training time.
Under each configuration, we train the respective model for
100 iterations and show the average time of the last 50 itera-
tions. The pre-training overheads of the evaluated systems,
such as the fused operator compilation in DeepSpeed and
strategy search in HiDup, are within tens of seconds and
negligible compared to the DNN training time.

6.2 Scalability
We first evaluate the per-iteration training time of HiDup as
compared to baselines on up to 64 GPUs across 8 machines.
Fig. 6 shows that similar performance is achieved among

HiDup, FastMoE, andDeepSpeedwhen training BERT-SGMoE
and BERT-Switch with up to 16 GPUs, while HiDup achieves
up to 18% speed-up as compared to the best baseline when
more GPUs are in use. This is because when we add more de-
vices, collective communication becomes slower due to band-
width contention. Compared with FastMoE and DeepSpeed,
our duplex design can mitigate the increased communication
overhead by overlapping computation and communication,
achieving better results.
Benefited from its optimized implementation, FastMoE

achieves the best performance in 8-GPU training, but is
bottlenecked by communication with more GPUs. It also
experiences OOM in 64-GPU training, due to the lack of per-
expert processing capacity limit. DeepSpeed’s MoE module
shows a similar scaling trend as HiDup, but is consistently
slower than HiDup as it does not overlap computation and
communication.

When training ViT-SGMoE andViT-Switch, HiDup achieves
significantly better performance (up to 61% faster) than the
baselines. Computation time and communication time in
these models are closer to each other and HiDup can achieve
higher overlapping ratios.

6.3 Single-Machine Performance
We also evaluate HiDup in a single machine of 8 GPUs,
which represents a high-bandwidth inter-connect scenario

Pure-DP methods perform well with high bandwidth. HiDup automatically
identifies similar strategies and achieves comparable performance despite of the
additional overheads introduced by our Duplex design.



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Per-iteraion time breakdown
Accelerating Large-Scale Distributed Neural Network Training with SPMD Parallelism SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Table 4: Per-iteration time breakdown.
Single Machine Two Machines (100Gbps) Two Machines (30Gbps)

System HiDup DeepSpeed FastMoE HiDup DeepSpeed FastMoE HiDup DeepSpeed FastMoE
Wall time (s) 0.2972 0.3988 0.3492 0.3985 0.4993 0.6971 0.6657 0.8251 0.7563
Total time (s) 0.3245 0.3813 0.3375 0.4611 0.4827 0.6857 0.7453 0.8055 0.7417
Computation (s) 0.2948 0.3531 0.2182 0.3088 0.3479 0.2252 0.3021 0.3469 0.2300
Communication (s) 0.0297 0.0282 0.1193 0.1523 0.1347 0.4605 0.4432 0.4585 0.5117
Overlapping ratio 91.92% 0 0 41.10% 0 0 26.35% 0 0

einsum

bSEC

bECM

gating

ME
gate_weight

bSM

BeCM

All-To-All

BeCM

All-To-All

bECM

einsum

bSM

bSEC

Add

einsum

BSEC

BeCM

gating

ME
gate_weight

BSM

BeCM

All-To-All

bECM

einsum

bSM

BSEC

Add

Slice

BSeC

SliceSlice

bSECbSM

100 Gbps 10 Gbps

bSM bSM

Expert FFN Expert FFN

Figure 12: Partition strategies for MoE layers.

the bandwidth is reduced to 10Gbps, HiDup switches to the
strategy shown on the right side. This strategy duplicates
the calculation of the gating layer on every card, reducing
communication at the cost of more computation. The input
to the MoE layer is not partitioned, which is highly coupled
with the strategy used by the previous layer, indicating that
HiDup can holistically consider the partition strategy across
layers.

6.11 Computation/Communication Time
Estimation

We evaluate the impact of our computation and communi-
cation time estimation (using device flops and bandwidth,
as discussed in Sec. 5) on the strategy found by HiDup for
BERT-SGMoE on the same cluster as in Sec. 6.5. We add two
types of noises to authentic profiling results, generate the
best strategy based on these noisy estimations, and derive
the average ratio of per-iteration training time achieved with
the generated strategy over that of the optimal strategy gen-
erated using the unmodified estimations (the ‘Relative Time’
in Table 5). The first noise type is “𝑥% random noise”, with

Table 5: Impact of inaccurate computation and com-
munication time estimation.

Noise Relative time
20% random noise 100.2%
50% random noise 112.9%
+20% communication 100.0%
+50% communication 100.0%
−20% communication 100.0%
−50% communication 117.2%

0 20 40 60
0

20

40

60

Actual time (ms)

Es
tim

at
ed

tim
e
(m

s)

Figure 13: Flops-based computation time estimation.

which we randomly change the estimated time of each oper-
ator by up to 𝑥%. We conduct the experiments 10 times for
each noise level. The second type is “±𝑦% communication”,
which means we increase/decrease the estimated time of all
communication operators by 𝑦%. We observe from Table 5
that HiDup can find near-optimal strategies with noise up
to 20%, suggesting that it is resilient to estimation errors.
We show the estimated computation time and profiling

results for operators used in BERT-SGMoE in Fig. 13. The
flops-based estimation tends to under-estimate the compu-
tation time for small operators like element-wise addition,
because these operators may be memory-bound and flops do
not reflect the memory accessing time. For larger operators
like MatMul, the maximum estimation error is 17%.

6.12 Strategy Searching Time
Fig. 14 shows HiDup’s strategy search time for BERT-SGMoE.
In Fig. 14a, we keep the number of GPUs as 4 and alter
the number of layers in the model. The overall search time
increases linearly with the number of layers. In Fig. 14b, we
fix the number of layers at 6 and change the number of GPUs.

HiDup’s total time is similar to the baselines, but it achieves shorter wall time by
overlapping computation and communication.



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

SPMD Strategy

HiDup generates different strategies for
the same model on different clusters.

It automatically identifies
expert-designed strategies for common
models.

Accelerating Large-Scale Distributed Neural Network Training with SPMD Parallelism SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Table 4: Per-iteration time breakdown.
Single Machine Two Machines (100Gbps) Two Machines (30Gbps)

System HiDup DeepSpeed FastMoE HiDup DeepSpeed FastMoE HiDup DeepSpeed FastMoE
Wall time (s) 0.2972 0.3988 0.3492 0.3985 0.4993 0.6971 0.6657 0.8251 0.7563
Total time (s) 0.3245 0.3813 0.3375 0.4611 0.4827 0.6857 0.7453 0.8055 0.7417
Computation (s) 0.2948 0.3531 0.2182 0.3088 0.3479 0.2252 0.3021 0.3469 0.2300
Communication (s) 0.0297 0.0282 0.1193 0.1523 0.1347 0.4605 0.4432 0.4585 0.5117
Overlapping ratio 91.92% 0 0 41.10% 0 0 26.35% 0 0

einsum

bSEC

bECM

gating

ME
gate_weight

bSM

BeCM

All-To-All

BeCM

All-To-All

bECM

einsum

bSM

bSEC

Add

einsum

BSEC

BeCM

gating

ME
gate_weight

BSM

BeCM

All-To-All

bECM

einsum

bSM

BSEC

Add

Slice

BSeC

SliceSlice

bSECbSM

100 Gbps 10 Gbps

bSM bSM

Expert FFN Expert FFN

Figure 12: Partition strategies for MoE layers.

the bandwidth is reduced to 10Gbps, HiDup switches to the
strategy shown on the right side. This strategy duplicates
the calculation of the gating layer on every card, reducing
communication at the cost of more computation. The input
to the MoE layer is not partitioned, which is highly coupled
with the strategy used by the previous layer, indicating that
HiDup can holistically consider the partition strategy across
layers.

6.11 Computation/Communication Time
Estimation

We evaluate the impact of our computation and communi-
cation time estimation (using device flops and bandwidth,
as discussed in Sec. 5) on the strategy found by HiDup for
BERT-SGMoE on the same cluster as in Sec. 6.5. We add two
types of noises to authentic profiling results, generate the
best strategy based on these noisy estimations, and derive
the average ratio of per-iteration training time achieved with
the generated strategy over that of the optimal strategy gen-
erated using the unmodified estimations (the ‘Relative Time’
in Table 5). The first noise type is “𝑥% random noise”, with

Table 5: Impact of inaccurate computation and com-
munication time estimation.

Noise Relative time
20% random noise 100.2%
50% random noise 112.9%
+20% communication 100.0%
+50% communication 100.0%
−20% communication 100.0%
−50% communication 117.2%

0 20 40 60
0

20

40

60

Actual time (ms)

Es
tim

at
ed

tim
e
(m

s)

Figure 13: Flops-based computation time estimation.

which we randomly change the estimated time of each oper-
ator by up to 𝑥%. We conduct the experiments 10 times for
each noise level. The second type is “±𝑦% communication”,
which means we increase/decrease the estimated time of all
communication operators by 𝑦%. We observe from Table 5
that HiDup can find near-optimal strategies with noise up
to 20%, suggesting that it is resilient to estimation errors.
We show the estimated computation time and profiling

results for operators used in BERT-SGMoE in Fig. 13. The
flops-based estimation tends to under-estimate the compu-
tation time for small operators like element-wise addition,
because these operators may be memory-bound and flops do
not reflect the memory accessing time. For larger operators
like MatMul, the maximum estimation error is 17%.

6.12 Strategy Searching Time
Fig. 14 shows HiDup’s strategy search time for BERT-SGMoE.
In Fig. 14a, we keep the number of GPUs as 4 and alter
the number of layers in the model. The overall search time
increases linearly with the number of layers. In Fig. 14b, we
fix the number of layers at 6 and change the number of GPUs.



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Conclusion



Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion

Conclusion

▶ We propose Duplex that enables computation-communication overlapping
with SPMD parallelism.

▶ We design a Duplex-aware sharding strategy search algorithm.

▶ We explore graph transformation on PyTorch and implement HiDup based
on PyTorch fx.



Thank you!
Email: swzhang@cs.hku.hk


	Introduction
	Background and Motivation
	Duplex
	Sharding Strategy
	Implementation
	Evaluation
	Conclusion
	Appendix

