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Introduction
®0

Deep neural networks (DNN), especially Transformer-based models with
Mixture-of-Expert (MoE) layers, have become so large that distributed
training is necessary.

Communication overhead is a major problem in distributed DNN training. Using
TPUs with fast device-to-device links, communication can take up to 11% of
training time. On GPU clouds with Ethernet connection, communication can
take more than 60% of training time.

We present our system, HiDup, that mitigates the communication overhead by
computation-communication overlapping and overlapping-aware sharding
strategy.
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Background and Motivation
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Data Parallelism

With data parallelism (DP), a
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SPMD Parallelism

DP does not support models that exceed the memory of a single device. SPMD
parallelism is a more general method that allows sharding along any dimension of
any tensor. Collective communication is needed when the sharding methods of

two tensors are incompatible.
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SPMD Parallelism Examples
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Duplex: Enable Computation-Communication
Overlapping with SPMD Parallelism



Duplex
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Duplex

Inspired by gradient accumulation, we split
the input data on each worker into two
microbatches after applying SPMD
parallelism, and scheduling the two
microbatches into a pipeline such that the
computation of one microbatch overlaps
with the communication of the other
microbatch.
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Duplex Example
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Duplex

Accuracy: Only floating-point arithmetic errors.
Memory Usage: No increase.
GPU Utilization: Slightly reduced due to smaller tensor sizes.

Overheads: CUDA synchonization, gradient aggregation, memory bus
contention, interference between computation and communication.

» Speed-up: Up to 100% in ideal case.
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Duplex-aware Sharding Strategy
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Motivation

With the fast emergence of new DNN models, manually designing SPMD
strategies for each model is manpower intensive and time-consuming. Further,
the strategy may not always be optimal on different clusters.

Existing studies search for sharding strategy that minimizes communication
volume. This strategy may not be optimal when used together with Duplex.
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Sharding Strategy

» Objective: Find the sharding methods for all operators that minimizes the
training time with computation-communication overlapping.

» Basic Idea: Using dynamic programming to incrementally search for the
best strategies of a subgraph.

» Challenge: The best strategy of a subgraph may not be optimal for the
complete graph due to computation-communication overlapping.

» Solution: We propose a stage-based cost model and track two costs
associated with a search state.



Introduction Background and Motivation Duplex

0000 0000

Sharding Strategy
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More details in the paper.
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Evaluation Conclusion
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1: Input: Computation graph G
2: Output: Optimal SPMD strategy Q*

3: Initialize P with an empty strategy Qg

4: for C =Cj to C,, do

5. for Q € P where C € state(Q) do

6 for each (O, S) that can be appended to Q do

7: Qr—Qa(0,5)

8: if 3Q, € P s.t. state(Qp) = state(Q”) and Q" is
dominated by Q) then

9: continue
10: end if
11: for Q) € P where state(Qp) = state(Q’) do
12: if Q) is dominated by Qr then
13: remove Q) from P
14: end if
15: end for
16: append Qr into P
17: end for

18:  end for
19: end for
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Implementation
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Implementation

We implement HiDup as a graph transformation module on PyTorch. It takes as
input a single-card model (as PyTorch fx graph) and the cluster specification,
producing a modified graph that runs on all workers.

PyTorch Code
& Annotator

Single-Card Model :{}
Strategy Searcher I:(> Distributed Model
Cluster Specification |:>
Compiler

HiDup
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Implementation

» Annotator: Label the possible sharding methods for each operator, infer
the tensor sizes, and estimate the FLOPs.

» Strategy Searcher: Take annotated graph as input and search for the
optimal sharding strategy.

» Compiler: Modify the graph according to the strategy and applies Duplex.
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Experimental Setup

» Testbed: 8 machines on public cloud, each with 8 V100 GPUs and NVLink,
connected by 10Gbps network.

» Benchmarks: BERT (language modeling) and ViT (image classification),
with two variants of MoE layers, SGMoE and Switch.

» Baselines: DeepSpeed, FastMoE, PyTorch DDP, and Horovod.
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Per-iteration training time

Evaluation
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HiDup outperforms baselines when scaling up, because the collective
communication becomes slower with more cards and HiDup can mitigate the

increased communication overhead with our Duplex design.

Conclusion
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Pure-DP methods perform well with high bandwidth. HiDup automatically
identifies similar strategies and achieves comparable performance despite of the
additional overheads introduced by our Duplex design.

Conclusion
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Per-iteraion time breakdown
Single Machine Two Machines (100Gbps) Two Machines (30Gbps)

System HiDup | DeepSpeed | FastMoE | HiDup | DeepSpeed | FastMoE | HiDup | DeepSpeed | FastMoE
Wall time (s) 0.2972 | 0.3988 0.3492 0.3985 | 0.4993 0.6971 0.6657 | 0.8251 0.7563
Total time (s) 0.3245 | 0.3813 0.3375 0.4611 | 0.4827 0.6857 0.7453 | 0.8055 0.7417
Computation (s) 0.2948 | 0.3531 0.2182 0.3088 | 0.3479 0.2252 0.3021 | 0.3469 0.2300
Communication (s) | 0.0297 | 0.0282 0.1193 0.1523 | 0.1347 0.4605 0.4432 | 0.4585 0.5117
Overlapping ratio 91.92% | 0 0 41.10% | 0 0 26.35% | 0 0

HiDup's total time is similar to the baselines, but it achieves shorter wall time by
overlapping computation and communication.
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SPMD Strategy

Duplex
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HiDup generates different strategies for
the same model on different clusters.

It automatically identifies
expert-designed strategies for common
models.

Sharding Strategy Implementation Evaluation Conclusion
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Conclusion

» We propose Duplex that enables computation-communication overlapping
with SPMD parallelism.

» We design a Duplex-aware sharding strategy search algorithm.

» We explore graph transformation on PyTorch and implement HiDup based
on PyTorch fx.
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