Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
[e]e] 0000 0000 0000 000 000000 [e]e]

Accelerating Large-Scale Distributed Neural Network
Training with SPMD Parallelism

Shiwei Zhang! Lansong Diao> Chuan Wu! Siyu Wang? Wei Lin?

IThe University of Hong Kong
2Alibaba Group

ACM SoCC 2022

= i -
N , ?HE UNIVEjlzsl'I%OF HONG KONG 62 AI I b a b a

Introduction
®0

Deep neural networks (DNN), especially Transformer-based models with
Mixture-of-Expert (MoE) layers, have become so large that distributed
training is necessary.

Communication overhead is a major problem in distributed DNN training. Using
TPUs with fast device-to-device links, communication can take up to 11% of
training time. On GPU clouds with Ethernet connection, communication can
take more than 60% of training time.

We present our system, HiDup, that mitigates the communication overhead by
computation-communication overlapping and overlapping-aware sharding
strategy.

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
oe 0000 0000 0000 000 000000

Content

Background and Motivation
Duplex

Sharding Strategy
Implementation

Evaluation

Conclusion

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
[e]e] @000 0000 0000 000 000000 [e]e]

Background and Motivation

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
[e]e] 0800 0000 0000 000 000000

Data Parallelism

With data parallelism (DP), a

minibatch of training data is split along . I T TR o
the batch size dimension and each e
worker processes a slice mdependently. - i W I
All-Reduce is used to synchonize the L] . . L

X z vZ [
epuo (B/d, Hy) (B/d, Hp) (B/d, Hp) (B/d, Hy)

grandients at the end of each iteration. . %"

X
(H1, Hp) (B, Hy) (H1,Hp) (Hq Hg) (H1, Hp)

w X w w /A
(H1, Hp) @.H1) (H1Hp) (H1,Hp)) i

’—‘ MatMul ’—‘ Loss ’—‘ MatMul ’—‘
] [Back (|

MatMul X z vz X
MatMul Loss |—> Back (B/d, H1) (B/d, H2) (B/d, H2) (B/d, H1)
8, m B H1

@) ©m

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
[e]e] o] 0000 0000 000 000000 [e]e]

SPMD Parallelism

DP does not support models that exceed the memory of a single device. SPMD
parallelism is a more general method that allows sharding along any dimension of
any tensor. Collective communication is needed when the sharding methods of

two tensors are incompatible.

w X w w
(H1/d, Hp) (B, Hi/d) (H1/d, Hp) (H1/d, Hp)
(A1To0) - Goduoe) = Matmul
LAl Hy ‘”smer Back
z vz X X
GPUO (El/d H1) ® H1/d) ®. HQ) (B/d, Hp) (® Hp) (B, Hi/d) (B/d, H1)
GPU1 w X w w
(H1/d, Hp) (B, Hy/d) (Hq/d, Hp) (H1/d, Ho)
ALTo Mathol—) foduod) =D Mathul
A Al \Seatter/ Back
z vz X
(B/u Hy) ®, Hﬂd) ®, Hz) (B/d, Hp) (B, H) (B, Hi/d) (B/d, H1)

Introduction Background and Motivation Duplex Sharding Strategy

Implementation Evaluation Conclusion
(e]e] oooe 0000 0000 [e]e]e} 000000 (e]e]
SPMD Parallelism Examples
output (ahard 1) output_(shard E)
- _ _ Add & Norm Add & Norm
7 Y= GeLU(XA) Y 4" Z=Dropout(YB)
3) R Feed Forward
I FFN FFN
i
i
| — Add & Norm Add & Norm
i
|
i
|
|
|
1
/

Mul
Attention

(N/2)x

Add & Norm

\I1-to-ALL Combine
Z = Dropout(Y B)

E|=
L ﬁi
B-
Device E
———

Vi,V Input embeddings +
bedd Positional enbeddings
(b) Self-Attention (shard 1) (shard &)

Source: Shoeybi, M., et al. “Megatron-LM" (2019). Source: Lepikhin, D., et al. “GShard” (2020).

Model-parallel
MoE

1-to-All Dispat:

=
ess——
— E
fil 4
B HE

L?J
—-
@@@@
= =

DR Add & Norm
Devices Multit-Head
1. Atteption

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
[e]e] 0000 @000 0000 000 000000 [e]e]

Duplex: Enable Computation-Communication
Overlapping with SPMD Parallelism

Duplex
000

Duplex

Inspired by gradient accumulation, we split
the input data on each worker into two
microbatches after applying SPMD
parallelism, and scheduling the two
microbatches into a pipeline such that the
computation of one microbatch overlaps
with the communication of the other
microbatch.

R 2 [7 \
{ Attention All-To-All MoE All-To-All
Duplicate
{Attenno IAII -To-All| MoE EAII -To- AI{Attentlo IAII -To-All| MoE EAII -To- AII}
[P DR R >|
Microbatch 1 Microbatch 2
Duplex
Microbatch 1
R > ‘
AttentlonIAll -To-Alll MoE |All-To- AIIJ
{Attentlon All-To-All| MoE {AII -To- AII}
‘ < ——————————————————————————— > ‘

Microbatch 2 .
Time

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
[e]e] 0000 [e]e] o] 0000 000 000000 [e]e]

Duplex Example

w X w w w
(H1/d, Hp) (B12, Hy/d) 1H1/d Hp) (HidHp) (H1/d, Hp)

=T = =T

Il
i
{1

o VZ A28
(B/2d, Hq) (BI2, Hy/d) (812, Hy) (812, Hy) (B2, Hyld) (B12d, Hy)
==l =T W= W= W=l == & —
(B/2d, H1) (B/2, Hy/d) (B/2, H2) (B/2d, Hz) (B/2d, H2) (B/2, H2) (B/2, H1/d) (B/2d, H1)
w
X w w
(H/d Ha) B12,H1id) (H1/d, Hp) (H1/d, H
N N NN N R N B I D D
Gput w w W W
(H1/d, Hp) (812, Hﬂdj 1H1ld Hp) (Hy/d,Hp) (H1/d, Hp)
= W=V = —
X X - z - X X
(B/2d, Hq) (B2, Hy/d) (812, Hy) z H (B12, Hyld) (B/2d, Hq)

— ﬂ% | ';l;awlu\l‘ MalMuh At —]

AN
A
X X z vz vx 23
(B/2d, Hy) (B12, Hy/d) (812, Hp) (B/2d, Hp) (B/2d, Hp) (812, Hp) (812, H/d (8129, Hy)

W
(H1/d, Hp)

ullil

X
(812, H/d) u«u/a Hz) (m/a H)

Duplex
[e]e]e])

Duplex

Accuracy: Only floating-point arithmetic errors.
Memory Usage: No increase.
GPU Utilization: Slightly reduced due to smaller tensor sizes.

Overheads: CUDA synchonization, gradient aggregation, memory bus
contention, interference between computation and communication.

» Speed-up: Up to 100% in ideal case.

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
(e]e] 0000 0000 @000 [e]e]e} 000000 (e]e]

Duplex-aware Sharding Strategy

Sharding Strategy
0®00

Motivation

With the fast emergence of new DNN models, manually designing SPMD
strategies for each model is manpower intensive and time-consuming. Further,
the strategy may not always be optimal on different clusters.

Existing studies search for sharding strategy that minimizes communication
volume. This strategy may not be optimal when used together with Duplex.

Sharding Strategy
00e0

Sharding Strategy

» Objective: Find the sharding methods for all operators that minimizes the
training time with computation-communication overlapping.

» Basic Idea: Using dynamic programming to incrementally search for the
best strategies of a subgraph.

» Challenge: The best strategy of a subgraph may not be optimal for the
complete graph due to computation-communication overlapping.

» Solution: We propose a stage-based cost model and track two costs
associated with a search state.

Introduction Background and Motivation Duplex

0000 0000

Sharding Strategy

yQ()
yQU-1)
Stage i-1 Stage i
e - e -
Microbatch 1 MatMul = Loss
Stage i-1] Stage i
= i

—

— — ﬁR T
' =T
Microbatch 2—3! All-To-All >/ Mathul Loss

WQU- + 0QG-1) 6000 = comp)

max{-¢Q(i-1), comm(i)}

max{comm(i), comp(i)} Time

More details in the paper.

Sharding Strategy
ocooe

Evaluation Conclusion

Implementation
[e] 000000 [e]e]

1: Input: Computation graph G
2: Output: Optimal SPMD strategy Q*

3: Initialize P with an empty strategy Qg

4: for C =Cj to C,, do

5. for Q € P where C € state(Q) do

6 for each (O, S) that can be appended to Q do

7: Qr—Qa(0,5)

8: if 3Q, € P s.t. state(Qp) = state(Q”) and Q" is
dominated by Q) then

9: continue
10: end if
11: for Q) € P where state(Qp) = state(Q’) do
12: if Q) is dominated by Qr then
13: remove Q) from P
14: end if
15: end for
16: append Qr into P
17: end for

18: end for
19: end for

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
[e]e] 0000 0000 0000 @00 000000 [e]e]

Implementation

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
00 [e C oeo o 00

Implementation

We implement HiDup as a graph transformation module on PyTorch. It takes as
input a single-card model (as PyTorch fx graph) and the cluster specification,
producing a modified graph that runs on all workers.

PyTorch Code
& Annotator

Single-Card Model :{}
Strategy Searcher I:(> Distributed Model
Cluster Specification |:>
Compiler

HiDup

Implementation
ooe

Implementation

» Annotator: Label the possible sharding methods for each operator, infer
the tensor sizes, and estimate the FLOPs.

» Strategy Searcher: Take annotated graph as input and search for the
optimal sharding strategy.

» Compiler: Modify the graph according to the strategy and applies Duplex.

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
[e]e] 0000 0000 0000 000 @00000 [e]e]

Evaluation

Evaluation
0@0000

Experimental Setup

» Testbed: 8 machines on public cloud, each with 8 V100 GPUs and NVLink,
connected by 10Gbps network.

» Benchmarks: BERT (language modeling) and ViT (image classification),
with two variants of MoE layers, SGMoE and Switch.

» Baselines: DeepSpeed, FastMoE, PyTorch DDP, and Horovod.

Introduction Background and Motivation Duplex Sharding Strategy Implementation
(e]e] 0000 0000 0000 [e]e]e}

Per-iteration training time

Evaluation
00000

BERT-SGMoE BERT-Switch ViT-SGMoE ViT-Switch
b 2F 2F 3
£ 2 2
g
2 II II i | |
I | | N i || I
'go OHII i | M o\on_ofl il
A~ 16 32 16 32 16 32 16 32

Number of GPUs Number of GPUs Number of GPUs Number of GPUs

‘D HiDup B DeepSpeed] FastMoE‘

HiDup outperforms baselines when scaling up, because the collective
communication becomes slower with more cards and HiDup can mitigate the

increased communication overhead with our Duplex design.

Conclusion

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation
e} 0000 0000 0000 000 000800
Single Machine Performance
BERT-SGMoE BERT-Switch ViT-SGMoE ViT-Switch
©
£ 04r |04 1oast H 015t .
=
=]
0.1 ¢ i - 0.1 -
2 02 1 02 ; . ;
§ § 0.05 § - O‘OS*H H -
= i |
£ 4 8 0 4 8 0 4 8 0 4 8
Number of GPUs Number of GPUs Number of GPUs Number of GPUs

‘D HiDup [DeepSpeed [FastMoE [Horovod [PyTorch DDP‘

Pure-DP methods perform well with high bandwidth. HiDup automatically
identifies similar strategies and achieves comparable performance despite of the
additional overheads introduced by our Duplex design.

Conclusion

Evaluation

0000e0
Per-iteraion time breakdown
Single Machine Two Machines (100Gbps) Two Machines (30Gbps)

System HiDup | DeepSpeed | FastMoE | HiDup | DeepSpeed | FastMoE | HiDup | DeepSpeed | FastMoE
Wall time (s) 0.2972 | 0.3988 0.3492 0.3985 | 0.4993 0.6971 0.6657 | 0.8251 0.7563
Total time (s) 0.3245 | 0.3813 0.3375 0.4611 | 0.4827 0.6857 0.7453 | 0.8055 0.7417
Computation (s) 0.2948 | 0.3531 0.2182 0.3088 | 0.3479 0.2252 0.3021 | 0.3469 0.2300
Communication (s) | 0.0297 | 0.0282 0.1193 0.1523 | 0.1347 0.4605 0.4432 | 0.4585 0.5117
Overlapping ratio 91.92% | 0 0 41.10% | 0 0 26.35% | 0 0

HiDup's total time is similar to the baselines, but it achieves shorter wall time by
overlapping computation and communication.

Introduction Background and Motivation
(e]e] 0000

SPMD Strategy

Duplex
0000

HiDup generates different strategies for
the same model on different clusters.

It automatically identifies
expert-designed strategies for common
models.

Sharding Strategy Implementation Evaluation Conclusion
0000 [e]e]e]e]e] }
bSM 100 Gbps BSM 10 Gbps
gate_weight gate_weight
=
[gating | | gating |
Slice
|] |
2
II-To-All | einsum |
Expert FFN Expert FFN

[einsum |

bSM

[Add | [Add |
—t

bSM bSM

Introduction Background and Motivation Duplex Sharding Strategy Implementation Evaluation Conclusion
[e]e] 0000 0000 0000 000 000000 0

Conclusion

Conclusion
oe

Conclusion

» We propose Duplex that enables computation-communication overlapping
with SPMD parallelism.

» We design a Duplex-aware sharding strategy search algorithm.

» We explore graph transformation on PyTorch and implement HiDup based
on PyTorch fx.

Thank you!

Email: swzhang®@cs.hku.hk

	Introduction
	Background and Motivation
	Duplex
	Sharding Strategy
	Implementation
	Evaluation
	Conclusion
	Appendix

