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Irregular Tensor Programs

Current tensor programming frameworks
(Tensorflow, PyTorch, etc.) work on
whole-tensor level.

Irregular tensor programs usually include
fine-grained operations that only use
a part of a tensor and combination of
multiple operations that should be
fused.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang

sl
id

in
g

 w
in

d
o

w a

b

c

d

e

f

x T

𝑓𝑒𝑎𝑡_𝑙𝑒𝑛

Q K

bx cx dx

dot

(summation)
sliding window

(a) Longformer computation

pad(Q).as_strided K

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

x T
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Q_strided = pad(Q, ...).as_strided(...)

dot = einsum(..., Q_strided, K)

(c) PyTorch implementation of Longformer

Figure 1. Partial attention implementation in Longformer.

tensors need to be transformed back and forth and a large
amount of redundant computation or memory copies are
introduced.

We take Longformer model [8] as an example, as shown in
Figure 1(a). Different from traditional attention computing
correlations for all tokens, Longformer computes correla-
tions for pairs of nearby tokens that have a distance no
greater than a threshold, thus it is capable to process much
longer sequences. The range of the nearby tokens can be
viewed as a sliding window. One common implementation
on typical operator-based frameworks is to first pad and
copy feature matrix Q along the sliding window, as shown
in Figure 1(b), and the corresponding code is shown in Fig-
ure 1(c). As tensor Q is copied sliding-window-size-folded,
significant memory redundancy is introduced.
Such types of tensor programs are increasingly common

in emerging deep learning models. For simplicity, we call
them irregular tensor programs. Compared with common
tensor programs, such programs usually have the following
features: 1) Fine-grained operations. The data required,
used, and reused are not in a whole-tensor level, but de-
termined by context. 2) Combination of multiple opera-
tions. These tensor programs usually need a series of oper-
ations to achieve corresponding functions. Multiple tensor
operations should be combined.

Although users can use customized operators in operator-
based frameworks, current frameworks only provide limited
expressiveness to support irregular tensor programs. For ex-
ample, vmap in JAX and PyTorch supports iterating through
a tensor and applies operations to each part of it, but the
iteration should be dependence-free. TVM [12] is fully built
on top of customized operators, but each operator is limited
to perfectly nested loops, with dependence-free loops on
the outer side, and reduction loops on the inner side. Due

to these limitations, users still have to introduce redundant
operators.

In practice, when it is difficult to express a tensor program
with an operator-based framework, users can still express
the computation of part or whole of it in a general-purpose
programming language, such as Python and C++. The main
reason is that fine-grained control flow in such languages
can easily remove the redundancy. In this work, we call such
a program a free-form tensor program. However, such
a program cannot achieve satisfying performance without
careful optimizations, which require significant human ef-
forts and expertise. Architecture-specific optimizations, such
as parallelization and explicit utilization of cache or scratch-
pad memory, have to be done manually for every hardware
backend. Moreover, automatic differentiation (AD), which
is desired in typical tensor applications, exacerbates this
problem. The original program and its gradient should be
implemented separately. General-purpose programming lan-
guages such as Julia [9] provide an easy way to interact
with tensors and compute gradients. However, performing
optimizations on them is still a difficult task.

To address this challenge, we propose FreeTensor, a redun-
dancy-avoid domain-specific language (DSL) for tensor pro-
grams. Different from existing works, we introduce fine-
grained tensor operations to reduce redundant computation
and memory access while keeping tensors as first-class citi-
zens to maintain programming simplicity. To analyze com-
plex dependence introduced by fine-grained control flow,
our FreeTensor compiler takes advantage of polyhedral tech-
niques for automatic analysis, and thus we apply a series
of optimizations including parallelization, loop transforma-
tion, and memory hierarchy transformation to generate high-
performance code. Moreover, since differentiation is critical
in tensor programs, FreeTensor supports fine-grained auto-
matic differentiation with optimizations to reduce memory
redundancy by balancing between storing or re-computing
intermediate tensors.

In summary, we make the following contributions in this
work:

• We propose a free-form DSL, named FreeTensor, which
supports redundancy-avoid tensor programming by pro-
viding granularity-oblivious tensor operations.

• We provide holistic compilation optimizations in FreeTen-
sor to generate highly efficient tensor programs, including
partial evaluation on dimension-free programs with recur-
sions, dependence-aware transformations on fine-grained
control flows, and automatic code generation for different
architectures.

• FreeTensor supports fine-grained automatic differentia-
tion combined with efficient selective intermediate tensor
materialization.

• Evaluation shows that compared with existing tensor pro-
gramming frameworks, FreeTensor achieves up to 5.10×
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Free-Form Tensor Programs

FreeTensor: A Free-Form DSL with Holistic Optimizations for Irregular Tensor Programs PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

partial tensors flexibly to avoid unnecessary computation
and memory access.
All the operations in FreeTensor’s DSL, including arith-

metic operators (+, -, *, /, etc.), built-in functions (sum, abs,
etc.), and function calls, are directly performed on tensors.
These operations will then be lowered to high-performance
native code, which will be introduced in Section 4.

3.2 Granularity-Oblivious Tensor Operations
Tensor operator is a widely used abstraction in tensor pro-
grams, bringing significant simplification for tensor program-
ming. Since irregular tensor programs usually operate partial
tensor instead of a whole tensor to save computation, sup-
porting partial tensor operations is necessary. Users of tra-
ditional operator-based frameworks are expected to invoke
operators as coarse-grained as possible. As mentioned in Sec-
tion 2, implementing irregular tensor programs with such
tensor operators will bring extensive computation and mem-
ory access redundancy. To tackle this problem, we introduce
granularity-oblivious operations in FreeTensor to provide
the ability to write redundancy-avoid tensor programs.

# Q = create_var((seq_len, feat_len), "f32", "gpu")

# K = create_var((seq_len, feat_len), "f32", "gpu")

# V = create_var((seq_len, feat_len), "f32", "gpu")

@optimize # define an optimize region

def LongformerFwd(Q, K, V):

Y = create_var((seq_len, feat_len), "f32", "gpu")

for j in range(seq_len):

dot = create_var((2 * w + 1), "f32", "gpu")

for k in range(-w, w + 1):

if j + k >= 0 and j + k < seq_len:

dot[k + w] = sum(Q[j] * K[j + k])

Y[j] = compute_y(dot, V[j - w : j + w])

@optimize # define an optimize region

def compute_y(dot, V_j):

attn = softmax(dot)

... # the rest code is omitted

Figure 5. Free-form implementation code of Longformer in
Figure 1. The range j-w to j+w marks the sliding window.

To achieve granularity-oblivious tensor operations, we
introduce the following semantics in our DSL: integer ranged
for-loops, branches, and always-inlined function calls. We will
give more explanation about why we introduce these criti-
cal features in Section 4. With the help of these semantics,
FreeTensor can support tensor operations in any granularity.
Figure 5 shows an example how the Longformer example
in Figure 1 is implemented using FreeTensor. In this case,
we iterate along the input sequence with a for-loop j, and
iterate alongside the sliding window with a loop k. Elements

of K are directly accessed by index j+k, without copying the
whole tensor beforehand.

FreeTensor also provides a tensor operator library, called
libop, supporting operators ranging from basic operator-
like element-wise operations, reductions, and matrix mul-
tiplications to complex ones like a softmax. We implement
libop in pure DSL code instead of directly mapping to na-
tive code implementation. At compile time, function calls to
libop will be fully inlined as nested loops, then optimized
together with the rest of a program. For example, the tensor-
wise zeros, abs, - and += in Figure 3(b) are all provided by
libop.

3.3 Dimension-Free Programming
Tensor dimension is a key property for tensor computation,
and most operations of tensor programs are closely con-
nected to transformations around the tensor dimension. We
record dimension-related properties in the meta-data of a
tensor, which also enjoys first-class support. The dimension-
ality, shapes, element types, and device placements can be
accessed using the .ndim, .shape, .dtype, and .mtype prop-
erties, respectively. Particularly, tensor shapes are kept in
their expression form. For example, after we flatten an 𝑁 × 2
-shaped 2-D tensor A to a 1-D tensor B, we know that the
length of B should be 2𝑁 , instead of an arbitrary number. We
can safely assert that 2𝑁 is an even number and reshape B
back to an 𝑁 × 2 shape.

def add(A, B, C):

for i1 in range(A.shape(0)):

for i2 in range(A.shape(1)):

...

for ik in range(A.shape(k-1)):

C[i1,i2,...,ik] =

A[i1,i2,...,ik] + B[i1,i2,...,ik]

(a) Adding k-D tensors with k nested loops

def add(A, B, C):

if A.ndim == 0:

C = A + B

else:

for i in range(A.shape(0)):

add(A[i], B[i], C[i])

(b) Adding tensors with any dimensionality with a finite recursion

Figure 6. Example of element addition for high-dimensional
tensors.

In FreeTensor, we express a computation for any dimen-
sionality with a finite recursion. Figure 6 gives an exam-
ple of how to write dimension-free tensor programs us-
ing finite recursions. As shown in Figure 6(a), if a tensor’s
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(b) Operator-based implementation

Q_strided = pad(Q, ...).as_strided(...)
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(c) PyTorch implementation of Longformer

Figure 1. Partial attention implementation in Longformer.

tensors need to be transformed back and forth and a large
amount of redundant computation or memory copies are
introduced.

We take Longformer model [8] as an example, as shown in
Figure 1(a). Different from traditional attention computing
correlations for all tokens, Longformer computes correla-
tions for pairs of nearby tokens that have a distance no
greater than a threshold, thus it is capable to process much
longer sequences. The range of the nearby tokens can be
viewed as a sliding window. One common implementation
on typical operator-based frameworks is to first pad and
copy feature matrix Q along the sliding window, as shown
in Figure 1(b), and the corresponding code is shown in Fig-
ure 1(c). As tensor Q is copied sliding-window-size-folded,
significant memory redundancy is introduced.
Such types of tensor programs are increasingly common

in emerging deep learning models. For simplicity, we call
them irregular tensor programs. Compared with common
tensor programs, such programs usually have the following
features: 1) Fine-grained operations. The data required,
used, and reused are not in a whole-tensor level, but de-
termined by context. 2) Combination of multiple opera-
tions. These tensor programs usually need a series of oper-
ations to achieve corresponding functions. Multiple tensor
operations should be combined.

Although users can use customized operators in operator-
based frameworks, current frameworks only provide limited
expressiveness to support irregular tensor programs. For ex-
ample, vmap in JAX and PyTorch supports iterating through
a tensor and applies operations to each part of it, but the
iteration should be dependence-free. TVM [12] is fully built
on top of customized operators, but each operator is limited
to perfectly nested loops, with dependence-free loops on
the outer side, and reduction loops on the inner side. Due

to these limitations, users still have to introduce redundant
operators.

In practice, when it is difficult to express a tensor program
with an operator-based framework, users can still express
the computation of part or whole of it in a general-purpose
programming language, such as Python and C++. The main
reason is that fine-grained control flow in such languages
can easily remove the redundancy. In this work, we call such
a program a free-form tensor program. However, such
a program cannot achieve satisfying performance without
careful optimizations, which require significant human ef-
forts and expertise. Architecture-specific optimizations, such
as parallelization and explicit utilization of cache or scratch-
pad memory, have to be done manually for every hardware
backend. Moreover, automatic differentiation (AD), which
is desired in typical tensor applications, exacerbates this
problem. The original program and its gradient should be
implemented separately. General-purpose programming lan-
guages such as Julia [9] provide an easy way to interact
with tensors and compute gradients. However, performing
optimizations on them is still a difficult task.

To address this challenge, we propose FreeTensor, a redun-
dancy-avoid domain-specific language (DSL) for tensor pro-
grams. Different from existing works, we introduce fine-
grained tensor operations to reduce redundant computation
and memory access while keeping tensors as first-class citi-
zens to maintain programming simplicity. To analyze com-
plex dependence introduced by fine-grained control flow,
our FreeTensor compiler takes advantage of polyhedral tech-
niques for automatic analysis, and thus we apply a series
of optimizations including parallelization, loop transforma-
tion, and memory hierarchy transformation to generate high-
performance code. Moreover, since differentiation is critical
in tensor programs, FreeTensor supports fine-grained auto-
matic differentiation with optimizations to reduce memory
redundancy by balancing between storing or re-computing
intermediate tensors.

In summary, we make the following contributions in this
work:

• We propose a free-form DSL, named FreeTensor, which
supports redundancy-avoid tensor programming by pro-
viding granularity-oblivious tensor operations.

• We provide holistic compilation optimizations in FreeTen-
sor to generate highly efficient tensor programs, including
partial evaluation on dimension-free programs with recur-
sions, dependence-aware transformations on fine-grained
control flows, and automatic code generation for different
architectures.

• FreeTensor supports fine-grained automatic differentia-
tion combined with efficient selective intermediate tensor
materialization.

• Evaluation shows that compared with existing tensor pro-
gramming frameworks, FreeTensor achieves up to 5.10×
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Contributions

▶ FreeTensor DSL to express free-form tensor programs.

▶ Holistic compilation optimizations including partial evaluation,
denpendence-aware transformation, and automatic code generation for
different architectures.

▶ Fine-grained automatic differentiation (AD) with selective tensor
materialization (gradient checkpointing).

▶ Evaluation shows that compared to PyTorch, JAX, TVM, Julia, and DGL,
FreeTensor achieves up to 5.10x speedup (2.08x on average) without AD
and up to 127.74x speed up (36.26x on average) with AD.
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Background and Motivation
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Current State

▶ Tensorflow and PyTorch use optimized libraries (cuDNN, cuBLAS, Intel
MKL) for computation. New kernels have to be developed for new
operations used in new models.

▶ TVM is proposed to reduce manual efforts in writing new kernels. However,
it does not support irregular tensor programs.

▶ Julia is a general purpose programming language that is capable of
expressing irregular tensor programs, but it fails to generate
high-performance code due to lacking domain knowledge.
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Motivating Example

The same operation expressed with free-form
tensor program does not include redundant
operators (indexing, reshape, cat, etc.) and does
not use extra memory.
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operators flatten, index_select, reshape, and cat, are
included, which are only used to rearrange existing data, but
do not perform a meaningful computation.

Even though TVM supports highly customized operators,
the indirect indexing on tensors still stops it from represent-
ing the programwithout combining traditional operators like
in Figure 2(b). A general-purpose programming language like
Julia is able to represent such a case in a fine-grained control
flow. However, it requires significant manual optimization
and parallelization.

2.3 Challenges of FreeTensor
To solve the problem above, we adopt a fine-grained con-
trol flow to remove unnecessary memory accesses, shown
in Figure 3(b). Specifically, we iterate each face i and its
neighbor j, and directly index the j-th and (j+1)-th face
from the input tensor e. After that, we perform fine-grained
tensor operations to calculate the difference, and result is
directly accumulated to a tensor y. Here, 𝑒 𝑗 , 𝑒 𝑗+1, and 𝑒 𝑗+2
are individual tensors as shown in Figure 3(a), where each
tensor operation is fine-grained and performed individually.

𝑒𝑗𝑒𝑗+1 𝑖𝑛𝑑𝑒𝑥 𝑠𝑢𝑏 + 𝑎𝑏𝑠 𝑎𝑑𝑑_𝑡𝑜
Iterate on each face i

Iterate on each neighbor j

(a) Free-form implementation

for i in range(n_faces):

y = zeros(in_feats)

for j in range(3):

y += abs(e[adj[i, j], :]

- e[adj[i, (j + 1) % 3], :])

(b) Free-form implementation code

Figure 3. The circular difference of SubdivNet in FreeTensor.

FreeTensor adapts such a fine-grained approach to operate
each tensor. Compared to the operator-based implementa-
tion, the program in FreeTensor accesses tensor elements
in an on-demand manner, without redundant operations to
rearrange them beforehand. However, complex control flows
brought by FreeTensor introduce significant challenges for
efficient code generation. We summarize main challenges
here.
• Optimization with the presence of dependence. Fine-
grained control flow introduced by FreeTensor makes effi-
cient code generation even harder. We expect FreeTensor
can automatically generate performant code without too
much manual effort. However, complex control and data
dependence hinder potential code transformation.

• Efficient automatic differentiation on complex con-
trol flows. Automatic differentiation (AD) on a program
with complex control flow can further introduce much
redundancy, which neutralizes the benefit provided by a
free-form language. How to design a high-performance
AD mechanism is more challenging.

3 Free-Form DSL
This section describes how we design a free-form domain-
specific language (DSL) for emerging irregular tensor pro-
grams. As a DSL for tensor programs, tensors should be
treated as first-class citizens for programming simplification.
To support operations on partial tensors to eliminate redun-
dant computation and memory access, FreeTensor provides
support for tensor operations in any granularity by intro-
ducing fine-grained control flows and partial tensor index-
ing. Moreover, in order to generate high-performance code,
FreeTensor provides extra meta-information and program-
ming guidance for users to assist underlying compilation.
The rest of this section will elaborate on the above designs.

3.1 Tensors as First-Class Citizens
Tensor definition. FreeTensor treats tensors as first-class
citizens to ease programming difficulty. More specifically,
tensors (of various element types) are primary data types
in FreeTensor. We call a tensor with dimension 𝑁 an 𝑁 -D
tensor, and scalar is treated as a 0-D tensor. Tensors are
stored in a compact memory layout, and tensor shape is
not mutable once it is created. To guarantee that there is no
overlap between tensors, tensors are copied by values. Tensor
elements can be any primary scalar data type, including
integer, single/double/half floating point, etc., which cover
typical tensor programs’ needs.

# declare a 3-D 32-bit floating-point tensor on cpu

A = create_var((2, 4, 6), "f32", "cpu")

# B is a 1-D tensor copied from A[0, 1]

B = A[0, 1]

# C is a 0-D tensor (scalar) copied from A[0, 1, 2]

C = A[0, 1, 2]

# D is a 2-D tensor with shape (2, 6), whose is the

# concatenation of A[0, 1] and A[0, 2]

D = A[0, 1:3]

Figure 4. Tensor definition and indexing.

Tensor indexing. Figure 4 shows how FreeTensor defines
and indexes a tensor. Tensors can be defined on different
devices, including CPU, GPU, etc. FreeTensor provides user-
friendly NumPy [18]-style indexing rules, which is capable
to index any sub-area in a tensor. Such indexing rules allow
users to index partial tensors, thus supporting operations on
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speedup (2.08× on average) without differentiation, and
up to 127.74× speedup (36.26× on average) with differen-
tiation for typical irregular tensor programs.
The rest of this paper is organized as follows. Section 2

describes the problem with a detailed example. Section 3 and
Section 4 describe our DSL and code generation in FreeTen-
sor. Section 5 addresses performance issues in AD. Section 6
evaluates the performance of FreeTensor. Section 7 discusses
some related works. Section 8 concludes the paper.

2 Background and Motivation
2.1 Background
Existing tensor programming frameworks including Tensor-
Flow [3], PyTorch [29] express tensor programs as invoca-
tions to highly optimized libraries, including cuDNN [15],
cuBLAS [16], and Intel MKL [26]. As the rapid development
of tensor programs requires many new operators, code gen-
eration frameworks like TVM [12] are proposed to reduce
manual efforts.

However, these frameworks lack effective support on em-
erging irregular tensor programs, which have features of
partial operations on a complete tensor or complex con-
trol dependence. To cater to current frameworks, redundant
computation and memory access are introduced in these pro-
grams. Although general-purpose programming languages
like Julia [9] can partly eliminate these redundancies, they
still fail to generate high-performance code due to lacking
domain knowledge.

2.2 Motivating Example
We take SubdivNet [19] in Figure 2 as an example to demon-
strate the limitation of existing frameworks and how FreeTen-
sor works. The major component in SubdivNet is multiple
convolutions over a mesh. Similar to a traditional convolu-
tion over an image that combines the feature of each pixel
and its adjacent pixels, a mesh convolution in SubdivNet
combines the feature of each face and its adjacent faces. To
overcome the order-invariant nature among faces, Subdi-
vNet introduces a circular difference computation, which is
described in the red box of Figure 2(a). For each central face
𝑒𝑖 , SubdivNet finds the feature vectors of its three adjacent
faces 𝑒 𝑗 , 𝑒 𝑗+1, and 𝑒 𝑗+2 via an adjacency array, and computes
their differences in a circular manner.
In this case, feature vectors 𝑒 𝑗 , 𝑒 𝑗+1, and 𝑒 𝑗+2 are fetched

and used with respect to a central face, but will never be
reused by other central faces without extra indexed access.
Ideally, they should be created and used individually, instead
of gathering from all central faces before computations.
However, a typical implementation in an operator-based

framework requires collectively operating these data, which
is shown in Figure 2(b). Specifically, as shown in Figure 2(c),
the Pytorch implementation of this program consists of the
following steps:

𝑦𝑖 = 𝑤0𝑒𝑖 +𝑤1෍𝑗 𝑒𝑗 +𝑤2෍𝑗 |𝑒𝑗 − 𝑒𝑗+1| + 𝑤3෍𝑗 |𝑒𝑖 − 𝑒𝑗|
𝑒𝑖𝑒𝑗+1 𝑒𝑗+2𝑒𝑗

(a) SubdivNet computation of a single mesh convolution,
where there is a circular difference computation in the red
box.

𝑒𝑗 𝑒𝑗+1 𝑒𝑗+2
𝑦

𝑒 𝑖𝑛𝑑𝑒𝑥𝑠𝑒𝑙𝑒𝑐𝑡
𝑖𝑛𝑑𝑒𝑥 + 𝑐𝑎𝑡 𝑠𝑢𝑏 + 𝑎𝑏𝑠 𝑠𝑢𝑚

redundant over neighbors

𝑒𝑗𝑒𝑗+1 𝑒𝑗+2
(b)Operator-based implementation of the circular difference.

# Step 1

adj_feat = index_select(e, 0, adj.flatten())

.reshape(n_faces, 3, in_feats)

# Step 2

reordered_adj_feat = cat([adj_feat[:, 1:],

adj_feat[:, :1]], dim=1)

# Step 3

y = sum(abs(adj_feat - reordered_adj_feat), dim=1)

(c) PyTorch code of the circular difference

Figure 2. Operator-based implementations of SubdivNet.

• Step 1: Construct a 3-D tensor (adj_feat) to store the
features of adjacent faces, by calling a flatten, an index_
select and a reshape in sequence. Each element in the
resulting tensor adj_feat[i, j, k] stores the k-th factor
of the feature of the j-th adjacent face of face i.

• Step 2: Slice the adj_feat tensor, reorder it, concatenate
it back, and now face 𝑒 𝑗+1 has the same index with the
original face 𝑒 𝑗 .

• Step 3: Do a subtraction and compute its absolute value.
After that, the sum is calculated.
Although every operator benefits from highly optimized

native code in a vendor-provided library, every intermediate
value should be stored as full-sized tensors, as depicted in
Figure 2(b). This introduces significant memory access redun-
dancy: tensor adj_feat is of size n_faces * 3 * n_feat,
which is much larger than input and output tensors and in-
curs a huge memory access overhead. Moreover, redundant
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Challenges

▶ Optimization with dependence. Fine-grained control flow introduced by
FreeTensor often contain data dependence that hinder potential code
transformation.

▶ Efficient automatic differentiation on complex control flows. Loops
often create a large number of intermediate tensors with AD. FreeTensor
incorperates selective tensor materialization to mitigate this problem.
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Free-Form DSL
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Tensor definition and indexing
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operators flatten, index_select, reshape, and cat, are
included, which are only used to rearrange existing data, but
do not perform a meaningful computation.

Even though TVM supports highly customized operators,
the indirect indexing on tensors still stops it from represent-
ing the programwithout combining traditional operators like
in Figure 2(b). A general-purpose programming language like
Julia is able to represent such a case in a fine-grained control
flow. However, it requires significant manual optimization
and parallelization.

2.3 Challenges of FreeTensor
To solve the problem above, we adopt a fine-grained con-
trol flow to remove unnecessary memory accesses, shown
in Figure 3(b). Specifically, we iterate each face i and its
neighbor j, and directly index the j-th and (j+1)-th face
from the input tensor e. After that, we perform fine-grained
tensor operations to calculate the difference, and result is
directly accumulated to a tensor y. Here, 𝑒 𝑗 , 𝑒 𝑗+1, and 𝑒 𝑗+2
are individual tensors as shown in Figure 3(a), where each
tensor operation is fine-grained and performed individually.

𝑒𝑗𝑒𝑗+1 𝑖𝑛𝑑𝑒𝑥 𝑠𝑢𝑏 + 𝑎𝑏𝑠 𝑎𝑑𝑑_𝑡𝑜
Iterate on each face i

Iterate on each neighbor j

(a) Free-form implementation

for i in range(n_faces):

y = zeros(in_feats)

for j in range(3):

y += abs(e[adj[i, j], :]

- e[adj[i, (j + 1) % 3], :])

(b) Free-form implementation code

Figure 3. The circular difference of SubdivNet in FreeTensor.

FreeTensor adapts such a fine-grained approach to operate
each tensor. Compared to the operator-based implementa-
tion, the program in FreeTensor accesses tensor elements
in an on-demand manner, without redundant operations to
rearrange them beforehand. However, complex control flows
brought by FreeTensor introduce significant challenges for
efficient code generation. We summarize main challenges
here.
• Optimization with the presence of dependence. Fine-
grained control flow introduced by FreeTensor makes effi-
cient code generation even harder. We expect FreeTensor
can automatically generate performant code without too
much manual effort. However, complex control and data
dependence hinder potential code transformation.

• Efficient automatic differentiation on complex con-
trol flows. Automatic differentiation (AD) on a program
with complex control flow can further introduce much
redundancy, which neutralizes the benefit provided by a
free-form language. How to design a high-performance
AD mechanism is more challenging.

3 Free-Form DSL
This section describes how we design a free-form domain-
specific language (DSL) for emerging irregular tensor pro-
grams. As a DSL for tensor programs, tensors should be
treated as first-class citizens for programming simplification.
To support operations on partial tensors to eliminate redun-
dant computation and memory access, FreeTensor provides
support for tensor operations in any granularity by intro-
ducing fine-grained control flows and partial tensor index-
ing. Moreover, in order to generate high-performance code,
FreeTensor provides extra meta-information and program-
ming guidance for users to assist underlying compilation.
The rest of this section will elaborate on the above designs.

3.1 Tensors as First-Class Citizens
Tensor definition. FreeTensor treats tensors as first-class
citizens to ease programming difficulty. More specifically,
tensors (of various element types) are primary data types
in FreeTensor. We call a tensor with dimension 𝑁 an 𝑁 -D
tensor, and scalar is treated as a 0-D tensor. Tensors are
stored in a compact memory layout, and tensor shape is
not mutable once it is created. To guarantee that there is no
overlap between tensors, tensors are copied by values. Tensor
elements can be any primary scalar data type, including
integer, single/double/half floating point, etc., which cover
typical tensor programs’ needs.

# declare a 3-D 32-bit floating-point tensor on cpu

A = create_var((2, 4, 6), "f32", "cpu")

# B is a 1-D tensor copied from A[0, 1]

B = A[0, 1]

# C is a 0-D tensor (scalar) copied from A[0, 1, 2]

C = A[0, 1, 2]

# D is a 2-D tensor with shape (2, 6), whose is the

# concatenation of A[0, 1] and A[0, 2]

D = A[0, 1:3]

Figure 4. Tensor definition and indexing.

Tensor indexing. Figure 4 shows how FreeTensor defines
and indexes a tensor. Tensors can be defined on different
devices, including CPU, GPU, etc. FreeTensor provides user-
friendly NumPy [18]-style indexing rules, which is capable
to index any sub-area in a tensor. Such indexing rules allow
users to index partial tensors, thus supporting operations on
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partial tensors flexibly to avoid unnecessary computation
and memory access.
All the operations in FreeTensor’s DSL, including arith-

metic operators (+, -, *, /, etc.), built-in functions (sum, abs,
etc.), and function calls, are directly performed on tensors.
These operations will then be lowered to high-performance
native code, which will be introduced in Section 4.

3.2 Granularity-Oblivious Tensor Operations
Tensor operator is a widely used abstraction in tensor pro-
grams, bringing significant simplification for tensor program-
ming. Since irregular tensor programs usually operate partial
tensor instead of a whole tensor to save computation, sup-
porting partial tensor operations is necessary. Users of tra-
ditional operator-based frameworks are expected to invoke
operators as coarse-grained as possible. As mentioned in Sec-
tion 2, implementing irregular tensor programs with such
tensor operators will bring extensive computation and mem-
ory access redundancy. To tackle this problem, we introduce
granularity-oblivious operations in FreeTensor to provide
the ability to write redundancy-avoid tensor programs.

# Q = create_var((seq_len, feat_len), "f32", "gpu")

# K = create_var((seq_len, feat_len), "f32", "gpu")

# V = create_var((seq_len, feat_len), "f32", "gpu")

@optimize # define an optimize region

def LongformerFwd(Q, K, V):

Y = create_var((seq_len, feat_len), "f32", "gpu")

for j in range(seq_len):

dot = create_var((2 * w + 1), "f32", "gpu")

for k in range(-w, w + 1):

if j + k >= 0 and j + k < seq_len:

dot[k + w] = sum(Q[j] * K[j + k])

Y[j] = compute_y(dot, V[j - w : j + w])

@optimize # define an optimize region

def compute_y(dot, V_j):

attn = softmax(dot)

... # the rest code is omitted

Figure 5. Free-form implementation code of Longformer in
Figure 1. The range j-w to j+w marks the sliding window.

To achieve granularity-oblivious tensor operations, we
introduce the following semantics in our DSL: integer ranged
for-loops, branches, and always-inlined function calls. We will
give more explanation about why we introduce these criti-
cal features in Section 4. With the help of these semantics,
FreeTensor can support tensor operations in any granularity.
Figure 5 shows an example how the Longformer example
in Figure 1 is implemented using FreeTensor. In this case,
we iterate along the input sequence with a for-loop j, and
iterate alongside the sliding window with a loop k. Elements

of K are directly accessed by index j+k, without copying the
whole tensor beforehand.

FreeTensor also provides a tensor operator library, called
libop, supporting operators ranging from basic operator-
like element-wise operations, reductions, and matrix mul-
tiplications to complex ones like a softmax. We implement
libop in pure DSL code instead of directly mapping to na-
tive code implementation. At compile time, function calls to
libop will be fully inlined as nested loops, then optimized
together with the rest of a program. For example, the tensor-
wise zeros, abs, - and += in Figure 3(b) are all provided by
libop.

3.3 Dimension-Free Programming
Tensor dimension is a key property for tensor computation,
and most operations of tensor programs are closely con-
nected to transformations around the tensor dimension. We
record dimension-related properties in the meta-data of a
tensor, which also enjoys first-class support. The dimension-
ality, shapes, element types, and device placements can be
accessed using the .ndim, .shape, .dtype, and .mtype prop-
erties, respectively. Particularly, tensor shapes are kept in
their expression form. For example, after we flatten an 𝑁 × 2
-shaped 2-D tensor A to a 1-D tensor B, we know that the
length of B should be 2𝑁 , instead of an arbitrary number. We
can safely assert that 2𝑁 is an even number and reshape B
back to an 𝑁 × 2 shape.

def add(A, B, C):

for i1 in range(A.shape(0)):

for i2 in range(A.shape(1)):

...

for ik in range(A.shape(k-1)):

C[i1,i2,...,ik] =

A[i1,i2,...,ik] + B[i1,i2,...,ik]

(a) Adding k-D tensors with k nested loops

def add(A, B, C):

if A.ndim == 0:

C = A + B

else:

for i in range(A.shape(0)):

add(A[i], B[i], C[i])

(b) Adding tensors with any dimensionality with a finite recursion

Figure 6. Example of element addition for high-dimensional
tensors.

In FreeTensor, we express a computation for any dimen-
sionality with a finite recursion. Figure 6 gives an exam-
ple of how to write dimension-free tensor programs us-
ing finite recursions. As shown in Figure 6(a), if a tensor’s
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partial tensors flexibly to avoid unnecessary computation
and memory access.
All the operations in FreeTensor’s DSL, including arith-

metic operators (+, -, *, /, etc.), built-in functions (sum, abs,
etc.), and function calls, are directly performed on tensors.
These operations will then be lowered to high-performance
native code, which will be introduced in Section 4.

3.2 Granularity-Oblivious Tensor Operations
Tensor operator is a widely used abstraction in tensor pro-
grams, bringing significant simplification for tensor program-
ming. Since irregular tensor programs usually operate partial
tensor instead of a whole tensor to save computation, sup-
porting partial tensor operations is necessary. Users of tra-
ditional operator-based frameworks are expected to invoke
operators as coarse-grained as possible. As mentioned in Sec-
tion 2, implementing irregular tensor programs with such
tensor operators will bring extensive computation and mem-
ory access redundancy. To tackle this problem, we introduce
granularity-oblivious operations in FreeTensor to provide
the ability to write redundancy-avoid tensor programs.

# Q = create_var((seq_len, feat_len), "f32", "gpu")

# K = create_var((seq_len, feat_len), "f32", "gpu")

# V = create_var((seq_len, feat_len), "f32", "gpu")

@optimize # define an optimize region

def LongformerFwd(Q, K, V):

Y = create_var((seq_len, feat_len), "f32", "gpu")

for j in range(seq_len):

dot = create_var((2 * w + 1), "f32", "gpu")

for k in range(-w, w + 1):

if j + k >= 0 and j + k < seq_len:

dot[k + w] = sum(Q[j] * K[j + k])

Y[j] = compute_y(dot, V[j - w : j + w])

@optimize # define an optimize region

def compute_y(dot, V_j):

attn = softmax(dot)

... # the rest code is omitted

Figure 5. Free-form implementation code of Longformer in
Figure 1. The range j-w to j+w marks the sliding window.

To achieve granularity-oblivious tensor operations, we
introduce the following semantics in our DSL: integer ranged
for-loops, branches, and always-inlined function calls. We will
give more explanation about why we introduce these criti-
cal features in Section 4. With the help of these semantics,
FreeTensor can support tensor operations in any granularity.
Figure 5 shows an example how the Longformer example
in Figure 1 is implemented using FreeTensor. In this case,
we iterate along the input sequence with a for-loop j, and
iterate alongside the sliding window with a loop k. Elements

of K are directly accessed by index j+k, without copying the
whole tensor beforehand.

FreeTensor also provides a tensor operator library, called
libop, supporting operators ranging from basic operator-
like element-wise operations, reductions, and matrix mul-
tiplications to complex ones like a softmax. We implement
libop in pure DSL code instead of directly mapping to na-
tive code implementation. At compile time, function calls to
libop will be fully inlined as nested loops, then optimized
together with the rest of a program. For example, the tensor-
wise zeros, abs, - and += in Figure 3(b) are all provided by
libop.

3.3 Dimension-Free Programming
Tensor dimension is a key property for tensor computation,
and most operations of tensor programs are closely con-
nected to transformations around the tensor dimension. We
record dimension-related properties in the meta-data of a
tensor, which also enjoys first-class support. The dimension-
ality, shapes, element types, and device placements can be
accessed using the .ndim, .shape, .dtype, and .mtype prop-
erties, respectively. Particularly, tensor shapes are kept in
their expression form. For example, after we flatten an 𝑁 × 2
-shaped 2-D tensor A to a 1-D tensor B, we know that the
length of B should be 2𝑁 , instead of an arbitrary number. We
can safely assert that 2𝑁 is an even number and reshape B
back to an 𝑁 × 2 shape.

def add(A, B, C):

for i1 in range(A.shape(0)):

for i2 in range(A.shape(1)):

...

for ik in range(A.shape(k-1)):

C[i1,i2,...,ik] =

A[i1,i2,...,ik] + B[i1,i2,...,ik]

(a) Adding k-D tensors with k nested loops

def add(A, B, C):

if A.ndim == 0:

C = A + B

else:

for i in range(A.shape(0)):

add(A[i], B[i], C[i])

(b) Adding tensors with any dimensionality with a finite recursion

Figure 6. Example of element addition for high-dimensional
tensors.

In FreeTensor, we express a computation for any dimen-
sionality with a finite recursion. Figure 6 gives an exam-
ple of how to write dimension-free tensor programs us-
ing finite recursions. As shown in Figure 6(a), if a tensor’s

876



Content Introduction Background and Motivation Free-Form DSL Code Generation Experiments Summary

Code Generation



Content Introduction Background and Motivation Free-Form DSL Code Generation Experiments Summary

Stack-Scoped Abstract Syntax Tree (AST)

Stack-scoped: variables are restricted in
subtrees.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan, and Chen Zhang

shape cannot be determined when writing the tensor pro-
gram, users cannot write a straightforward nested-loop pro-
gram, which brings significant programming complexity. In
FreeTensor, we suggest users write tensor programs with un-
determined dimensionality using finite recursions, as shown
in Figure 6(b). Such recursions will be further expanded to
nested loops using partial evaluation at compile-time, which
will be illustrated in Section 4.1.

4 Generating High Performance Code
Our free-form DSL allows users to write tensor programs
without redundant computation or memory access. Pro-
grams written by FreeTensor DSL will be parsed to a stack-
scoped abstract syntax tree (AST), as FreeTensor’s intermedi-
ate representation (IR), to perform further optimizations and
generate high-performance native code. With this design,
each tensor is alive only in the sub-tree of its definition node,
called TensorDef node. The stack-scoped restriction brings
significant simplification for IR transformation: 1) we are
able to transformASTwithout breaking an allocation-freeing
pair; 2) by limiting the life scope of a tensor to a sub-tree,
most of the false dependence in dependence analysis can be
eliminated.

Figure 7 shows anAST of LongformerFwd function, whose
code is in Figure 5. We inline all function calls to perform
holistic optimizations across functions. Figure 8 shows the
resulting program of the example in Figure 5. After that, we
perform multiple optimizations on AST.

TensorDef 𝑌for 𝑗, 0, 𝑠𝑒𝑞_𝑙𝑒𝑛TensorDef 𝑑𝑜𝑡StmtSeqfor 𝑘, −𝑤, 𝑤 + 1 Store 𝑌 𝑖call 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑦, 𝑑𝑜𝑡, 𝑉 𝑗 − 𝑤, 𝑗 + 𝑤if 𝑗 + 𝑘 ≥ 0 and 𝑗 + 𝑘 < 𝑠𝑒𝑞_𝑙𝑒𝑛…
Figure 7. AST of LongformerFwd in Figure 5. Some nodes
are omitted.

4.1 Partial Evaluation for Dimension-Free
Programming

As mentioned in Section 3.3, users can write dimension-free
tensor programs with finite recursive functions. FreeTensor
supports such a feature by partially evaluating program with
respect to the meta-data of the tensors. By providing first-
class support on tensors with meta-data, dimensionalities
of all tensors in the programs are known at compile-time,
which makes it possible to apply partial evaluation for gen-
eral dimensionality programs implemented with recursion.

1 ...

2 for j in range(seq_len):

3 dot = create_var((2 * w + 1), "f32", "gpu")

4 for k in range(-w, w + 1):

5 if j + k >= 0 and j + k < seq_len:

6 dot[k + w] = 0

7 for p in range(feat_len):

8 dot[k + w] += Q[j, p] * K[j + k, p]

9

10 # compute_y, softmax is inlined

11 dot_max = create_var((), "f32", "gpu")

12 dot_max = -inf

13 for k in range(2 * w + 1):

14 dot_max = max(dot_max, dot[k])

15 dot_norm = create_var((2 * w + 1), "f32", "gpu")

16 for k in range(2 * w + 1):

17 dot_norm[k] = dot[k] - dot_max

18 ...

Figure 8. Inlined program of the example in Figure 5.

We take the code in Figure 6(b) as an example to illustrate
evaluating process, shown in Figure 9. Figure 9(a) is the origi-
nal program, with a recursive function call add. Suppose that
A is a 3-D tensor, then our compiler knows that the if con-
dition is always false, so all the statements in the if branch
are discarded, while the statements in the else branch will
always be executed. The function call add at the last line is
then evaluated, resulting in an optimized program as shown
in Figure 9(b). Then the compiler repeats such partial evalu-
ation process in Figure 9(b). Notice that A[i] is a 2-D tensor.
Finally, the final program after applying partial evaluation
is shown in Figure 9(c), where the recursive function call is
transformed into a nested loop.

4.2 Dependence-Aware Transformation
After inlining, we need to perform a series of transforma-
tions on the AST to generate efficient code from FreeTensor
IR. We apply a rich collection of transformations for various
optimizations, including transformations on loops, paral-
lelization, memory hierarchy, memory layout, and others, as
summarized in Table 1. These transformations are similar to
the schedule optimizations of Halide [31] and TVM [12], but
the fine-grained control flow brings significant challenges on
how to correctly apply these transformations. For example,
TVM only supports transformations on a perfectly nested
loop, meaning that there is no complex dependence that
needs to be considered while transforming. However, after
applying fine-grained control flow, complex dependence is
introduced. Still taking Figure 8 as an example, fusing loops
at Line 4, 13, and 16 can bring better locality. fusing the loops
at Line 4 and 13 is possible, but fusing the loops at Line 13
and 16 is incorrect because of the inter-iteration dependence
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partial tensors flexibly to avoid unnecessary computation
and memory access.
All the operations in FreeTensor’s DSL, including arith-

metic operators (+, -, *, /, etc.), built-in functions (sum, abs,
etc.), and function calls, are directly performed on tensors.
These operations will then be lowered to high-performance
native code, which will be introduced in Section 4.

3.2 Granularity-Oblivious Tensor Operations
Tensor operator is a widely used abstraction in tensor pro-
grams, bringing significant simplification for tensor program-
ming. Since irregular tensor programs usually operate partial
tensor instead of a whole tensor to save computation, sup-
porting partial tensor operations is necessary. Users of tra-
ditional operator-based frameworks are expected to invoke
operators as coarse-grained as possible. As mentioned in Sec-
tion 2, implementing irregular tensor programs with such
tensor operators will bring extensive computation and mem-
ory access redundancy. To tackle this problem, we introduce
granularity-oblivious operations in FreeTensor to provide
the ability to write redundancy-avoid tensor programs.

# Q = create_var((seq_len, feat_len), "f32", "gpu")

# K = create_var((seq_len, feat_len), "f32", "gpu")

# V = create_var((seq_len, feat_len), "f32", "gpu")

@optimize # define an optimize region

def LongformerFwd(Q, K, V):

Y = create_var((seq_len, feat_len), "f32", "gpu")

for j in range(seq_len):

dot = create_var((2 * w + 1), "f32", "gpu")

for k in range(-w, w + 1):

if j + k >= 0 and j + k < seq_len:

dot[k + w] = sum(Q[j] * K[j + k])

Y[j] = compute_y(dot, V[j - w : j + w])

@optimize # define an optimize region

def compute_y(dot, V_j):

attn = softmax(dot)

... # the rest code is omitted

Figure 5. Free-form implementation code of Longformer in
Figure 1. The range j-w to j+w marks the sliding window.

To achieve granularity-oblivious tensor operations, we
introduce the following semantics in our DSL: integer ranged
for-loops, branches, and always-inlined function calls. We will
give more explanation about why we introduce these criti-
cal features in Section 4. With the help of these semantics,
FreeTensor can support tensor operations in any granularity.
Figure 5 shows an example how the Longformer example
in Figure 1 is implemented using FreeTensor. In this case,
we iterate along the input sequence with a for-loop j, and
iterate alongside the sliding window with a loop k. Elements

of K are directly accessed by index j+k, without copying the
whole tensor beforehand.

FreeTensor also provides a tensor operator library, called
libop, supporting operators ranging from basic operator-
like element-wise operations, reductions, and matrix mul-
tiplications to complex ones like a softmax. We implement
libop in pure DSL code instead of directly mapping to na-
tive code implementation. At compile time, function calls to
libop will be fully inlined as nested loops, then optimized
together with the rest of a program. For example, the tensor-
wise zeros, abs, - and += in Figure 3(b) are all provided by
libop.

3.3 Dimension-Free Programming
Tensor dimension is a key property for tensor computation,
and most operations of tensor programs are closely con-
nected to transformations around the tensor dimension. We
record dimension-related properties in the meta-data of a
tensor, which also enjoys first-class support. The dimension-
ality, shapes, element types, and device placements can be
accessed using the .ndim, .shape, .dtype, and .mtype prop-
erties, respectively. Particularly, tensor shapes are kept in
their expression form. For example, after we flatten an 𝑁 × 2
-shaped 2-D tensor A to a 1-D tensor B, we know that the
length of B should be 2𝑁 , instead of an arbitrary number. We
can safely assert that 2𝑁 is an even number and reshape B
back to an 𝑁 × 2 shape.

def add(A, B, C):

for i1 in range(A.shape(0)):

for i2 in range(A.shape(1)):

...

for ik in range(A.shape(k-1)):

C[i1,i2,...,ik] =

A[i1,i2,...,ik] + B[i1,i2,...,ik]

(a) Adding k-D tensors with k nested loops

def add(A, B, C):

if A.ndim == 0:

C = A + B

else:

for i in range(A.shape(0)):

add(A[i], B[i], C[i])

(b) Adding tensors with any dimensionality with a finite recursion

Figure 6. Example of element addition for high-dimensional
tensors.

In FreeTensor, we express a computation for any dimen-
sionality with a finite recursion. Figure 6 gives an exam-
ple of how to write dimension-free tensor programs us-
ing finite recursions. As shown in Figure 6(a), if a tensor’s
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Table 1. AST transformations

Name Description

Lo
op

Tr
an
s.

split Split a loop into two nested loops
merge Merge two nested loops into one
reorder Reorder nested loops
fission Fission a loop into two consecutive loops
fuse Fuse two consecutive loops into one
swap Swap two consecutive statements including loops

Pa
ra
lle
liz
in
g

Tr
an
s.

parallelize Run a loop with multiple threads
unroll Unroll a loop into multiple copies of statements
blend Unroll a loop and interleave its statements from each iterations
vectorize Implement a loop with vector instructions

M
em

or
y

H
ie
ra
rc
hy

Tr
an
s. cache Fetch part of a tensor to a smaller one before some statements, and store it back after that

cache_reduce Create a small tensor before reductions, and reduce back to the original tensor after that
set_mtype Change where a tensor stores

M
em

or
y

La
yo

ut
Tr
an
s. var_split Split a dimension of a tensor into two

var_reorder Transpose two dimensions of a tensor
var_merge Merge two dimensions of a tensor

Ot
he
rs as_lib Fall back to calling vendor libraries for common computations

separate_tail Separate the main body and tailing iterations of a loop, to reduce branching overhead

# def add(A, B, C):

if A.ndim == 0:

C = A + B

else:

for i in range(A.shape(0)):

add(A[i], B[i], C[i])

A is a 3-D tensor, always false

Always true

(a) Source program
(a) Source program

for i in range(A.shape(0)):

if A[i].ndim == 0:

C[i] = A[i] + B[i]

else:

for j in range(A[i].shape(0)):

add(A[i][j], B[i][j], C[i][j])

A[i] is a 2-D tenor

(b) The program after first round partial evaluation
(b) The program after first round partial evaluation

for i in range(A.shape(0)):

for j in range(A[i].shape(0)):

for k in range(A[i][j].shape(0)):

C[i][j][k] = A[i][j][k] + B[i][j][k] 

Repeated

(c) Target program
(c) Target program

Figure 9. Example of partial evaluation on dimension-free
recursion. Suppose A, B, and C are 3-D tensors.

on dot_max. The fused program is shown in Figure 10, where
an offset "+w" is applied to iterator k, to make the indices
consistent.

1 ...

2 for j in range(seq_len):

3 dot = create_var((2 * w + 1), "f32", "gpu")

4 dot_max = create_var((), "f32", "gpu")

5 dot_max = -inf

6 for k in range(-w, w + 1):

7 if j + k >= 0 and j + k < seq_len:

8 dot[k + w] = 0

9 for p in range(feat_len):

10 dot[k + w] += Q[j, p] * K[j + k, p]

11 dot_max = max(dot_max, dot[k + w])

12 dot_norm = create_var((2 * w + 1), "f32", "gpu")

13 for k in range(2 * w + 1):

14 dot_norm[k] = dot[k] - dot_max

15 ...

Figure 10. Fused program of the example in Figure 8.

Since the dependence determines whether a transforma-
tion is correct, FreeTensor performs dependence analysis
before applying transformations. Different from operator-
based frameworks, we need to analyze programs in an instan-
ce-of-statement-wise precision instead of statement-wise
precision, where an instance of a statement refers to a state-
ment in a specific loop iteration. This means traditional data-
flow-graph-level analysis is not enough for FreeTensor.
There have been many studies on how to analyze depen-

dences in an instance-of-statement-wise precision and how
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shape cannot be determined when writing the tensor pro-
gram, users cannot write a straightforward nested-loop pro-
gram, which brings significant programming complexity. In
FreeTensor, we suggest users write tensor programs with un-
determined dimensionality using finite recursions, as shown
in Figure 6(b). Such recursions will be further expanded to
nested loops using partial evaluation at compile-time, which
will be illustrated in Section 4.1.

4 Generating High Performance Code
Our free-form DSL allows users to write tensor programs
without redundant computation or memory access. Pro-
grams written by FreeTensor DSL will be parsed to a stack-
scoped abstract syntax tree (AST), as FreeTensor’s intermedi-
ate representation (IR), to perform further optimizations and
generate high-performance native code. With this design,
each tensor is alive only in the sub-tree of its definition node,
called TensorDef node. The stack-scoped restriction brings
significant simplification for IR transformation: 1) we are
able to transformASTwithout breaking an allocation-freeing
pair; 2) by limiting the life scope of a tensor to a sub-tree,
most of the false dependence in dependence analysis can be
eliminated.

Figure 7 shows anAST of LongformerFwd function, whose
code is in Figure 5. We inline all function calls to perform
holistic optimizations across functions. Figure 8 shows the
resulting program of the example in Figure 5. After that, we
perform multiple optimizations on AST.

TensorDef 𝑌for 𝑗, 0, 𝑠𝑒𝑞_𝑙𝑒𝑛TensorDef 𝑑𝑜𝑡StmtSeqfor 𝑘, −𝑤, 𝑤 + 1 Store 𝑌 𝑖call 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑦, 𝑑𝑜𝑡, 𝑉 𝑗 − 𝑤, 𝑗 + 𝑤if 𝑗 + 𝑘 ≥ 0 and 𝑗 + 𝑘 < 𝑠𝑒𝑞_𝑙𝑒𝑛…
Figure 7. AST of LongformerFwd in Figure 5. Some nodes
are omitted.

4.1 Partial Evaluation for Dimension-Free
Programming

As mentioned in Section 3.3, users can write dimension-free
tensor programs with finite recursive functions. FreeTensor
supports such a feature by partially evaluating program with
respect to the meta-data of the tensors. By providing first-
class support on tensors with meta-data, dimensionalities
of all tensors in the programs are known at compile-time,
which makes it possible to apply partial evaluation for gen-
eral dimensionality programs implemented with recursion.

1 ...

2 for j in range(seq_len):

3 dot = create_var((2 * w + 1), "f32", "gpu")

4 for k in range(-w, w + 1):

5 if j + k >= 0 and j + k < seq_len:

6 dot[k + w] = 0

7 for p in range(feat_len):

8 dot[k + w] += Q[j, p] * K[j + k, p]

9

10 # compute_y, softmax is inlined

11 dot_max = create_var((), "f32", "gpu")

12 dot_max = -inf

13 for k in range(2 * w + 1):

14 dot_max = max(dot_max, dot[k])

15 dot_norm = create_var((2 * w + 1), "f32", "gpu")

16 for k in range(2 * w + 1):

17 dot_norm[k] = dot[k] - dot_max

18 ...

Figure 8. Inlined program of the example in Figure 5.

We take the code in Figure 6(b) as an example to illustrate
evaluating process, shown in Figure 9. Figure 9(a) is the origi-
nal program, with a recursive function call add. Suppose that
A is a 3-D tensor, then our compiler knows that the if con-
dition is always false, so all the statements in the if branch
are discarded, while the statements in the else branch will
always be executed. The function call add at the last line is
then evaluated, resulting in an optimized program as shown
in Figure 9(b). Then the compiler repeats such partial evalu-
ation process in Figure 9(b). Notice that A[i] is a 2-D tensor.
Finally, the final program after applying partial evaluation
is shown in Figure 9(c), where the recursive function call is
transformed into a nested loop.

4.2 Dependence-Aware Transformation
After inlining, we need to perform a series of transforma-
tions on the AST to generate efficient code from FreeTensor
IR. We apply a rich collection of transformations for various
optimizations, including transformations on loops, paral-
lelization, memory hierarchy, memory layout, and others, as
summarized in Table 1. These transformations are similar to
the schedule optimizations of Halide [31] and TVM [12], but
the fine-grained control flow brings significant challenges on
how to correctly apply these transformations. For example,
TVM only supports transformations on a perfectly nested
loop, meaning that there is no complex dependence that
needs to be considered while transforming. However, after
applying fine-grained control flow, complex dependence is
introduced. Still taking Figure 8 as an example, fusing loops
at Line 4, 13, and 16 can bring better locality. fusing the loops
at Line 4 and 13 is possible, but fusing the loops at Line 13
and 16 is incorrect because of the inter-iteration dependence
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AST Transformation
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Table 1. AST transformations

Name Description
Lo

op
Tr
an
s.

split Split a loop into two nested loops
merge Merge two nested loops into one
reorder Reorder nested loops
fission Fission a loop into two consecutive loops
fuse Fuse two consecutive loops into one
swap Swap two consecutive statements including loops

Pa
ra
lle
liz
in
g

Tr
an
s.

parallelize Run a loop with multiple threads
unroll Unroll a loop into multiple copies of statements
blend Unroll a loop and interleave its statements from each iterations
vectorize Implement a loop with vector instructions

M
em

or
y

H
ie
ra
rc
hy

Tr
an
s. cache Fetch part of a tensor to a smaller one before some statements, and store it back after that

cache_reduce Create a small tensor before reductions, and reduce back to the original tensor after that
set_mtype Change where a tensor stores

M
em

or
y

La
yo

ut
Tr
an
s. var_split Split a dimension of a tensor into two

var_reorder Transpose two dimensions of a tensor
var_merge Merge two dimensions of a tensor

Ot
he
rs as_lib Fall back to calling vendor libraries for common computations

separate_tail Separate the main body and tailing iterations of a loop, to reduce branching overhead

# def add(A, B, C):

if A.ndim == 0:

C = A + B

else:

for i in range(A.shape(0)):

add(A[i], B[i], C[i])

A is a 3-D tensor, always false

Always true

(a) Source program
(a) Source program

for i in range(A.shape(0)):

if A[i].ndim == 0:

C[i] = A[i] + B[i]

else:

for j in range(A[i].shape(0)):

add(A[i][j], B[i][j], C[i][j])

A[i] is a 2-D tenor

(b) The program after first round partial evaluation
(b) The program after first round partial evaluation

for i in range(A.shape(0)):

for j in range(A[i].shape(0)):

for k in range(A[i][j].shape(0)):

C[i][j][k] = A[i][j][k] + B[i][j][k] 

Repeated

(c) Target program
(c) Target program

Figure 9. Example of partial evaluation on dimension-free
recursion. Suppose A, B, and C are 3-D tensors.

on dot_max. The fused program is shown in Figure 10, where
an offset "+w" is applied to iterator k, to make the indices
consistent.

1 ...

2 for j in range(seq_len):

3 dot = create_var((2 * w + 1), "f32", "gpu")

4 dot_max = create_var((), "f32", "gpu")

5 dot_max = -inf

6 for k in range(-w, w + 1):

7 if j + k >= 0 and j + k < seq_len:

8 dot[k + w] = 0

9 for p in range(feat_len):

10 dot[k + w] += Q[j, p] * K[j + k, p]

11 dot_max = max(dot_max, dot[k + w])

12 dot_norm = create_var((2 * w + 1), "f32", "gpu")

13 for k in range(2 * w + 1):

14 dot_norm[k] = dot[k] - dot_max

15 ...

Figure 10. Fused program of the example in Figure 8.

Since the dependence determines whether a transforma-
tion is correct, FreeTensor performs dependence analysis
before applying transformations. Different from operator-
based frameworks, we need to analyze programs in an instan-
ce-of-statement-wise precision instead of statement-wise
precision, where an instance of a statement refers to a state-
ment in a specific loop iteration. This means traditional data-
flow-graph-level analysis is not enough for FreeTensor.
There have been many studies on how to analyze depen-

dences in an instance-of-statement-wise precision and how
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AST Transformation Strategy

FreeTensor allows users to choose any transformation to apply on any statement.
On the other hand, it also provides a heuristic that applies 6 passes of
transformations.

▶ auto fuse: fuse loops to increase locality.

▶ auto vectorize: implement loops with vector instructions.

▶ auto parallel: bind loops to threads.

▶ auto mem type: try to put tensors near to processors (registers >
scratch-pad memory > main memory).

▶ auto use lib: replace certain operations with external libraries.

▶ auto unroll: unroll short loops to allow downstream optimizations.
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Native Code Generation

FreeTensor applies further optimizations on the AST after transformations,
including simplification on mathematical expressions, merging or removing
redundant memory access, and removing redundant branches. FreeTensor also
performs some backend-specific post-processing including inserting thread
synchronizing statements, generating parallel reduction statements, and
computing offsets of tensors in scratch-pad memory.

After that, FreeTensor generates OpenMP or CUDA code from the AST and
invoke dedicated backend compilers like gcc or nvcc for further lower-level
optimizations, and native code generations.



Content Introduction Background and Motivation Free-Form DSL Code Generation Experiments Summary

Automatic differentiation

Each write-after-read (WAR) dependency on
the tensor corresponds to a version that
need to be saved for backward pass.
FreeTensor decides whether a tensor should
be materialized at compile time.
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4. auto_mem_type: Try to put tensors as near to processors
as possible. Registers are preferred over scratch-pad mem-
ory, which is further preferred over main memory.

5. auto_use_lib: Try to replace computation-intensive sub-
programs with calls to external libraries with the use_lib
transformation. Transformations like fissionmay be ap-
plied to enable it.

6. auto_unroll: Unroll very-short loops to unleash optimiz-
ing opportunities for backend compilers.
For any user program, these passes are automatically in-

voked, but users are free to override them andmanually apply
other transformations. Beyond these basic strategies, we are
working on a machine-learning-guided solution similar to
Ansor [44], which will be our future work.

We apply further optimizations on the AST after trans-
formations, including simplification on mathematical ex-
pressions, merging or removing redundant memory access,
and removing redundant branches. We also perform some
backend-specific post-processing including inserting thread
synchronizing statements, generating parallel reduction state-
ments, and computing offsets of tensors in scratch-pad mem-
ory.

After that, we generate OpenMP or CUDA code from the
AST and invoke dedicated backend compilers like gcc or
nvcc for further lower-level optimizations, and native code
generations. A DSL function is finally compiled as a shared
library, which can be dynamically loaded from Python to
run.

5 Automatic Differentiation
5.1 Fine-Grained Automatic Differentiation
Automatic Differentiation (AD) is desired for tensor applica-
tions. AD helps users generate a gradient program from an
original program, where a gradient program is used to com-
pute the gradient of each input with respect to the program’s
output. A gradient program consists of a forward pass and a
backward pass. The forward pass computes the output while
keeping some intermediate tensors during its execution. The
backward pass computes gradients and reuses intermediate
tensors kept by the forward pass.

Inspired by Enzyme [27] and Zygote [20], we design a gen-
eral AD that is capable to differentiate fine-grained control
flow introduced by FreeTensor. Figure 15(b) gives an example
of a backward pass generated from the original program in
Figure 15(a). We keep in mind that the differentiated pro-
gram should still be optimizable by FreeTensor. Therefore,
we design our AD as a transformation pass on the AST. The
resulting program is also an AST, which enjoys the same
optimization opportunities as the original program.

One of the problems that hinder optimizing the differenti-
ated program lies in intermediate tensors. In the procedure
of AD, some intermediate tensors should be materialized in a
forward pass, and then retrieved back in the backward pass.

This procedure is also called checkpointing or saving a ten-
sor into a tape in some literature. However, an intermediate
tensor may be written many times in the program, so it has
to be materialized into multiple versions. For example, the
scalar t in Figure 15(a) (treated as a 0-D tensor) will be mate-
rialized in version i after its i-th assignment. Some existing
works like Tangent [36] and Zygote [20] maintain a version
number at run time, which hinders further parallelization.
Instead, we analyze a symbolic version number in FreeTen-
sor, similar to Enzyme [27]. Specifically, taking advantage of
the polyhedral analysis, we look for WAR dependence on t,
where eachWAR dependence corresponds to a version. Thus,
the version number is known at compile time as a symbolic
expression, which helps further parallelization.

for i in range(n):

t = a[i] * b[i] # To be materialized in t.tape[i]

y[i] = t * c[i]

z[i] = t * d[i]

(a) Original program

for i in range(n):

t.grad = z.grad[i] * d[i] + y.grad[i] * c[i]

d.grad[i] = z.grad[i] * t.tape[i]

c.grad[i] = y.grad[i] * t.tape[i]

b.grad[i] = t.grad * a[i]

a.grad[i] = t.grad * b[i]

(b) Backward pass with reuse

for i in range(n):

t = a[i] * b[i]

t.grad = z.grad[i] * d[i] + y.grad[i] * c[i]

d.grad[i] = z.grad[i] * t

c.grad[i] = y.grad[i] * t

b.grad[i] = t.grad * a[i]

a.grad[i] = t.grad * b[i]

(c) Backward pass with recomputing

Figure 15. Example of AD, where t.tape means the inter-
mediate value materialized in the forward pass.

5.2 Selective Intermediate Tensor Materialization
Directly transforming the AST does not always result in
expected performance, and we observe a significant perfor-
mance degradation resulting frommaterializing intermediate
tensors. In many AD tools, all intermediate tensors are ma-
terialized, which will introduce significant overhead in both
memory usage and access. We use an example to illustrate
it.
In Figure 15, t is stored in the original program until

reused with t.tape. In the example above, t is a scalar,
probably stored in cache or even registers. However, as t
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Experimental Setup

Hardware: A server with dual 12-core CPU and a V100 (32G).

Baselines: PyTorch 1.8.1, Jax 0.2.19, TVM (Nov 4, 2021), Julia 1.6.3, and
DGL 0.7.1.

Workloads:
- SubdivNet: a CNN for predicting properties of 3D objects.
- Longformer: a Transformer that only considers nearby tokens.
- SoftRas: a differentiable 3D rendering software.
- GAT: a GNN that uses attention for aggregation.



Content Introduction Background and Motivation Free-Form DSL Code Generation Experiments Summary

End-to-End Performance without AD
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Figure 16. End-to-end time with or without differentiation. ICE (Internal Compiler Error) means the compiler or framework
crashes when compiling. OOM (Out of Memory) means the program compiles but is unable to run for consuming too much
memory. WA (Wrong Answer) means the parallelized or differentiated program outputs a wrong result, even though the serial
non-differentiated program written by users is correct, which reveals a bug in the corresponding baseline.

programming in fine-grained control flows, such a program
cannot be parallelized because Julia performs AD in an SSA
IR which is not exposed to ordinary users. Therefore, we
implement all cases in operators. Since the gradient program
of GAT is non-trivial which requires preprocessing a sparse
matrix, we do not report the gradient time of GAT.
Without differentiation. Our speedup over the best base-
line for each case is up to 5.10×, and 2.08× on average, with-
out differentiation.
SubdivNet can hardly be represented in any of the base-

lines without redundancy, so we are consistently faster.
Longformer is hard to be implemented in traditional oper-

ator-based frameworks without redundancy, but we can im-
plement its sliding windows access as perfect nested loops
in TVM. However, we still have to combine other operators
including softmax. We achieve better performance in all
cases except for comparing with TVM on a GPU.

SoftRas includes complex geometric computations, which
requires combining a large number of operators in an oper-
ator-based framework. Fortunately, in JAX and PyTorch, this
application can be accelerated by expressing the computation
for individual faces and looping over multiple faces via the
vmapmeta-operator provided in the two frameworks. Taking
this into comparison, we still achieve better performance in
all cases except for comparing with JAX on CPUs.
For GAT, we achieve better performance even over DGL,

which is a dedicated framework for Graph Neural Networks,
because we can implement more computations in fewer ker-
nels. Comparing with Julia, although we use fine-grained
control flow for CPU cases, we achieve better performance
because we are able to apply more optimizations.
With differentiation. For gradient programs, our speedup
over the best baseline for each case is up to 127.74×, and
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Figure 16. End-to-end time with or without differentiation. ICE (Internal Compiler Error) means the compiler or framework
crashes when compiling. OOM (Out of Memory) means the program compiles but is unable to run for consuming too much
memory. WA (Wrong Answer) means the parallelized or differentiated program outputs a wrong result, even though the serial
non-differentiated program written by users is correct, which reveals a bug in the corresponding baseline.

programming in fine-grained control flows, such a program
cannot be parallelized because Julia performs AD in an SSA
IR which is not exposed to ordinary users. Therefore, we
implement all cases in operators. Since the gradient program
of GAT is non-trivial which requires preprocessing a sparse
matrix, we do not report the gradient time of GAT.
Without differentiation. Our speedup over the best base-
line for each case is up to 5.10×, and 2.08× on average, with-
out differentiation.
SubdivNet can hardly be represented in any of the base-

lines without redundancy, so we are consistently faster.
Longformer is hard to be implemented in traditional oper-

ator-based frameworks without redundancy, but we can im-
plement its sliding windows access as perfect nested loops
in TVM. However, we still have to combine other operators
including softmax. We achieve better performance in all
cases except for comparing with TVM on a GPU.

SoftRas includes complex geometric computations, which
requires combining a large number of operators in an oper-
ator-based framework. Fortunately, in JAX and PyTorch, this
application can be accelerated by expressing the computation
for individual faces and looping over multiple faces via the
vmapmeta-operator provided in the two frameworks. Taking
this into comparison, we still achieve better performance in
all cases except for comparing with JAX on CPUs.
For GAT, we achieve better performance even over DGL,

which is a dedicated framework for Graph Neural Networks,
because we can implement more computations in fewer ker-
nels. Comparing with Julia, although we use fine-grained
control flow for CPU cases, we achieve better performance
because we are able to apply more optimizations.
With differentiation. For gradient programs, our speedup
over the best baseline for each case is up to 127.74×, and
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Analysis of the Speedup

By avoiding redundant tensors and using fewer operators, FreeTensor significantly
reduces the numbers of kernel invocations, memory and cache access, and
FLOPs.
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Figure 17. Analysis of the speedup of SubdivNet GPU. The metrics refer to the number of GPU kernel invocations, the total
bytes of access to GPU DRAM and L2 cache, and the FLOP count, respectively.
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Figure 18. Time of FreeTensor without Selective Intermediate Tensor Materialization (FT(-)), and with Selective Intermediate
Tensor Materialization (FT(+)). The time is broken down into a forward pass and a backward pass. OOM (Out of Memory)
means the program is unable to run for consuming too much memory.

36.26× on average, where FreeTensor outperforms all base-
lines. Julia runs for an extremely long time in CPU cases
because it falls backs to single-thread execution for many
operators. All baselines fail to run Longformer on GPU since
the tight GPU memory limitation, but FreeTensor success-
fully executes it. The recomputing mechanism in FreeTensor
allows us to store much fewer intermediate tensors than the
baselines, which not only results in a better performance,
but also enables FreeTensor to run with a limited memory
capacity (32GB on a GPU).

6.3 Analysis of the Speedup
We further profile SubdivNet without differentiation case
running on a GPU to understand the reasons of our speedup.
As shown in Figure 17, FreeTensor is able to run the case
with only one GPU kernel invocation. This is achieved by
supporting irregular computation, which enables users to
implement the program as a whole. On the contrary, the
baselines require chaining multiple operators, which leads
to no less than 6 kernel invocations.
By using fewer operators, the memory footprint is also

reduced to only 3.31% on DRAM and 18.38% on L2 compared
to the best baseline. The reason is that intermediate results
can now be kept in registers, shared memory or cache, while
the baselines require storing them back to global memory
between operators.

As the result also shows, FreeTensor is even able to reduce
FLOP counts to 79.72% compared to the baseline, though

we do not apply any algorithmic optimizations. A poten-
tial reason is that implementing a program with only one
GPU kernel reveals more opportunities for backend compil-
ers (nvcc) to apply arithmetic optimizations like Common
Subexpression Elimination.

Profiling on the other cases shows similar results.

6.4 Optimization for AD
We analyze our Selective Intermediate Tensor Materializa-
tion introduced in Section 5.2 for AD. As Figure 18 shows,
compared to materializing all intermediate tensors, our Selec-
tive Intermediate Tensor Materialization contributes 1.21×
to 6.83× speedup, and prevents one of the cases from running
out of memory.
In particular, we can observe a significant speedup in a

forward pass, and in some cases, a moderate speedup in a
backward pass. For any tensor that our algorithm decided
to recompute it rather than to materialize it, there is a pure
performance gain in a forward pass, since we no longer
need to allocate memory and write to the memory for the
materialization. As for a backward pass, there will also be a
performance gain if the recomputing overhead is less than
the reusing overhead.

6.5 Compiling Time
We compare the compiling time used to compile the program
in Figure 16(a) between FreeTensor and TVM, as shown in Ta-
ble 2. We report the end-to-end compiling time including the
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Optimization for AD

For any tensors that FreeTensor decided to recompute it rather than to
materialize it, there is a pure performance gain in a forward pass, since we no
longer need to allocate memory and write to the memory for the materialization.
As for a backward pass, there will also be a performance gain if the recomputing
overhead is less than the reusing overhead.
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36.26× on average, where FreeTensor outperforms all base-
lines. Julia runs for an extremely long time in CPU cases
because it falls backs to single-thread execution for many
operators. All baselines fail to run Longformer on GPU since
the tight GPU memory limitation, but FreeTensor success-
fully executes it. The recomputing mechanism in FreeTensor
allows us to store much fewer intermediate tensors than the
baselines, which not only results in a better performance,
but also enables FreeTensor to run with a limited memory
capacity (32GB on a GPU).

6.3 Analysis of the Speedup
We further profile SubdivNet without differentiation case
running on a GPU to understand the reasons of our speedup.
As shown in Figure 17, FreeTensor is able to run the case
with only one GPU kernel invocation. This is achieved by
supporting irregular computation, which enables users to
implement the program as a whole. On the contrary, the
baselines require chaining multiple operators, which leads
to no less than 6 kernel invocations.
By using fewer operators, the memory footprint is also

reduced to only 3.31% on DRAM and 18.38% on L2 compared
to the best baseline. The reason is that intermediate results
can now be kept in registers, shared memory or cache, while
the baselines require storing them back to global memory
between operators.

As the result also shows, FreeTensor is even able to reduce
FLOP counts to 79.72% compared to the baseline, though

we do not apply any algorithmic optimizations. A poten-
tial reason is that implementing a program with only one
GPU kernel reveals more opportunities for backend compil-
ers (nvcc) to apply arithmetic optimizations like Common
Subexpression Elimination.

Profiling on the other cases shows similar results.

6.4 Optimization for AD
We analyze our Selective Intermediate Tensor Materializa-
tion introduced in Section 5.2 for AD. As Figure 18 shows,
compared to materializing all intermediate tensors, our Selec-
tive Intermediate Tensor Materialization contributes 1.21×
to 6.83× speedup, and prevents one of the cases from running
out of memory.
In particular, we can observe a significant speedup in a

forward pass, and in some cases, a moderate speedup in a
backward pass. For any tensor that our algorithm decided
to recompute it rather than to materialize it, there is a pure
performance gain in a forward pass, since we no longer
need to allocate memory and write to the memory for the
materialization. As for a backward pass, there will also be a
performance gain if the recomputing overhead is less than
the reusing overhead.

6.5 Compiling Time
We compare the compiling time used to compile the program
in Figure 16(a) between FreeTensor and TVM, as shown in Ta-
ble 2. We report the end-to-end compiling time including the
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auto-transforming time in FreeTensor, and the auto-tuning
time in TVM. We also report the total tuning rounds for the
multiple operators in TVM and the average tuning time of
each round. For each operator, TVM needs to tune multi-
ple rounds to reach an acceptable performance, resulting in
an extremely lengthy procedure. Since TVM cannot tune a
computation including indirect memory access, TVM has to
divide the application into multiple operators and tune them
separately, which further extends the compiling time. With
only 0.13% to 22.92% compiling time of TVM, FreeTensor
generates faster code on most of the evaluated applications.

Table 2. Compiling time of FreeTensor and TVM. Time of
FreeTensor includes auto-transforming. Time of TVM in-
cludes auto-tuning, where the tuning rounds and the time
per round are marked in parentheses. ICE means Internal
Compiler Error.

FreeTensor
time

TVM time
(rounds × each)

SubdivNet CPU 12.37 s 196 s (54 × 3.63 s)
SubdivNet GPU 13.10 s 237 s (131 × 1.81 s)
Longformer CPU 3.90 s 7531 s (2944 × 2.56 s)
Longformer GPU 8.30 s 8019 s (2944 × 2.72 s)
SoftRas CPU 4.43 s 2499 s (1024 × 2.44 s)
SoftRas GPU 9.49 s 10 361 s (2060 × 5.03 s)
GAT CPU 5.89 s ICE
GAT GPU 9.17 s ICE

7 Related Works
Operator-based frameworks. There aremultiple operator-
based frameworks including Chainer [34], PyTorch [29],
MXNet [11], TensorFlow [3], JAX [17], and TVM [12]. Chain-
er and PyTorch run as high-performance tensor operator
libraries, which can be invoked imperatively from Python.
MXNet and TensorFlow transform a program to a dataflow
graph, where each node represents a call to a tensor oper-
ator in a library. Optimizations can be performed on the
graph before execution. JAX improves optimization by intro-
ducing Just-in-Time compilation to enable optimizations for
complex or dynamic programs. TVM supports highly cus-
tomized operators by introducing a compute-and-schedule
programming model, where users first specify the mathe-
matical definition of computation and then optimize it with
explicit or machine-learning-guided transformations [14].
XLA [1], TensorRT [2], TASO [21], Rammer [24], and

PET [42] optimize tensor programs by re-combining ten-
sor operators. Comparing with these works, we try not to
introduce too many operators in the first place.
Compilers based on polyhedral analysis. Multiple com-
pilers adopt optimizations based on Polyhedral Analysis.
Pluto [10], PPCG [41], and CHiLL [32] are optimizing com-
pilers for general programs in C language. PPCG designs

an analytical cost model and performs optimization by solv-
ing an analytical model, while CHiLL implements transfor-
mations specified by users that are guided by polyhedral
analysis.
Tensor Comprehensions [37] and Tiramisu [5] introduce

polyhedral analysis to tensor programs. They improve oper-
ator-based framworks by optimizing their existing operators
with polyhedral analysis. We adopt polyhedral analysis to
guide our AST transformations on user-defined irregular
tensor programs.
Tensor-oriented design in general-purpose program-
ming languages. There are also some improvements in
general-purpose programming language for better supports
on tensors. Julia [9] provides efficient support on tensors,
where consecutive calls to tensor operations can be auto-
matically fused with macros. Triton [33] improves CUDA
and provides a tiled programming model for implementing
tensor operations on a GPU.
Automatic differentiation. There are several ways to im-
plement automatic differentiation [7, 35]. AD implemented
by most operator-based frameworks is based on graphs,
where a node represents a call to a tensor operation library,
and an edge represents a tensor [25, 29]. The AD process
replaces all the nodes to their gradient counterpart and re-
verses the order of the graph using the Chain Rule.

Tangent [36], Myia [35], Enzyme [27], and Zygote [20]
implement AD for general tensor programs by directly trans-
forming IR. We adopt this type of techniques in FreeTensor,
and further resolve its performance issues.

8 Conclusion
We propose FreeTensor, a free-form DSL for irregular tensor
programs. FreeTensor supports granularity-oblivious ten-
sor operations by enabling fine-grained control flows, and
integrates a series of optimizations, including partial evalua-
tion, dependence-aware transformation, and automatic code
generation, to generate high-performance code for different
architectures. FreeTensor also supports fine-grained auto-
matic differentiation to generate efficient gradient programs.
Experiments show a speedup over existing tensor program-
ming frameworks up to 5.10× (2.08× on average) for without
differentiation, and up to 127.74× (36.26× on average) after
differentiation.
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Strength

▶ New approach (polyhedral analysis) to solve new problem (irregular tensor
programs).

▶ Diverse baselines and benchmark models, with deep analysis for the speedup.

▶ A lot of concret code examples.
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Limitation

▶ The optimization strategy is greedy and not cost-based. We don’t know if
they hand-tuned the heuristics for the benchmark models.

▶ The benchmark models are all related to convolution operations, while they
do not implement them with the convolution operation provided by cuDNN.

▶ They duplicates some optimizations that would be performed by the backend
compiler (gcc and nvcc). Further, the backend compiler may override some
decisions made by FreeTensor, like loop fusion, reordering, and unrolling.

▶ Only supports fully static graphs with the shapes of all tensors known at
compile time.
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Takeaways

▶ New models bring new challenges and opportunities to machine learning
systems.

▶ We can find inspiration from other areas, like non-ML distributed systems
and non-ML compiler techniques.



Thank you!
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