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Introduction



Large Language Models

Most of the state-of-the-art large language
models use the decoder-only Transformer
architecture.

They take a sequence of tokens as input and
produce the probability distribution of the
next token.

Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
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Interactive vs. Throughput-oriented Inference

Interactive applications

▶ Chat Bot

▶ Customer Support

▶ Search

“Back-of-house” tasks are less sensitive
to latency.

▶ Information Extraction

▶ Data Wrangling

▶ Form Processing

It is possible to trade off latency for higher throughput in some workloads,
providing opportunities to reduce resource requirements.



Latency-Throughput Trade-off
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Abstract

The high computational and memory require-
ments of large language model (LLM) inference
make it feasible only with multiple high-end ac-
celerators. Motivated by the emerging demand for
latency-insensitive tasks with batched processing,
this paper initiates the study of high-throughput
LLM inference using limited resources, such as
a single commodity GPU. We present FlexGen,
a high-throughput generation engine for running
LLMs with limited GPU memory. FlexGen can
be flexibly configured under various hardware re-
source constraints by aggregating memory and
computation from the GPU, CPU, and disk. By
solving a linear programming problem, it searches
for efficient patterns to store and access tensors.
FlexGen further compresses the weights and the
attention cache to 4 bits with negligible accu-
racy loss. These techniques enable FlexGen to
have a larger space of batch size choices and
thus significantly increase maximum throughput.
As a result, when running OPT-175B on a sin-
gle 16GB GPU, FlexGen achieves significantly
higher throughput compared to state-of-the-art of-
floading systems, reaching a generation through-
put of 1 token/s for the first time with an effec-
tive batch size of 144. On the HELM bench-
mark, FlexGen can benchmark a 30B model with
a 16GB GPU on 7 representative sub-scenarios
in 21 hours. The code is available at https:
//github.com/FMInference/FlexGen.
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Figure 1. The total latency for a block and throughput trade-offs of
three offloading-based systems for OPT-175B (left) and OPT-30B
(right) on a single NVIDIA T4 (16 GB) GPU with 208 GB CPU
DRAM and 1.5TB SSD. FlexGen achieves a new Pareto-optimal
frontier with 100× higher maximum throughput for OPT-175B.
Other systems cannot further increase throughput due to out-of-
memory issues. “(c)” denotes compression.

1. Introduction
In recent years, large language models (LLMs) have
demonstrated strong performance across a wide range of
tasks (Brown et al., 2020; Bommasani et al., 2021; Zhang
et al., 2022; Chowdhery et al., 2022). Along with these un-
precedented capabilities, generative LLM inference comes
with unique challenges. These models can have billions, if
not trillions of parameters (Chowdhery et al., 2022; Fedus
et al., 2022), which leads to extremely high computational
and memory requirements to run. For example, GPT-175B
requires 325GB of GPU memory simply to load its model
weights. Fitting this model onto GPUs would require at least
five A100 (80GB) GPUs and complex parallelism strate-
gies (Pope et al., 2022; Aminabadi et al., 2022). Thus,
lowering LLM inference resource requirements has recently
attracted intense interest.

In this paper, we focus on a setting that we call throughput-
oriented generative inference. In addition to interactive
use cases such as chatbots, LLMs are also applied to many
“back-of-house” tasks such as benchmarking (Liang et al.,
2022), information extraction (Narayan et al., 2018), data
wrangling (Narayan et al., 2022), and form processing (Chen
et al., 2021). One key characteristic of these tasks is that they
often require running LLM inference in batches over a large
number of tokens (e.g., all the documents in a company’s
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Current State

▶ FasterTransformer, Orca, LightSeq, PaLM, TurboTransformers, DeepSpeed
Inference, and Hugging Face Accelerate focus on latency-oriented
scenarios with high-end accelerators.

▶ DeepSpeed Inference and Hugging Face Accelerate supports offloading that
is inherited from training systems. They fail to exploit the structure of the
throughput-oriented LLM inference computation.

▶ Petals enable LLM inference on accessible hardware by collaborative
computing.



FlexGen

The focus of this paper is designing
efficient offloading strategies for
high-throughput generative inference, on
a single commodity GPU.

FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU

corpus), and are less sensitive to latency. As a result, it
is possible to trade off latency for higher throughput in
these workloads, providing opportunities to reduce resource
requirements.

Prior efforts to lower resource requirements of LLM infer-
ence correspond to three directions: (1) model compression
to decrease total memory footprint (Dettmers et al., 2022;
Yao et al., 2022; Frantar et al., 2022; Xiao et al., 2022);
(2) collaborative inference to amortize inference cost via
decentralization (Borzunov et al., 2022); and (3) offloading
to utilize memory from CPU and disk (Aminabadi et al.,
2022; HuggingFace, 2022). These techniques have signifi-
cantly lowered the resource requirements for using LLMs,
but there are distinct limitations. Research in the first two
directions often assume that the model fits into the GPU
memory and thereby struggle to run 175B-scale models with
a single commodity GPU. On the other hand, state-of-the-
art offloading-based systems in the third category do not
achieve acceptable throughput on a single GPU due to inef-
ficient I/O scheduling and tensor placement. For example,
these systems can be bottlenecked by small batch sizes (e.g.,
batch sizes of only one or two for OPT-175B in some cases).

16 GB

208 GB

1.5 TB

GPU

CPU

Disk

12 GB/s

2 GB/s

Our focus is designing efficient
offloading strategies for high-
throughput generative inference,
on a single commodity GPU. To
run an LLM with limited GPU
memory, we can offload it to sec-
ondary storage and perform com-
putation part-by-part by partially loading it. On a typical
machine, there are three levels of the memory hierarchy, as
illustrated in the figure to the right. Higher levels are faster
but scarce, while lower levels are slower but abundant. In
throughput-oriented scenarios, we can sacrifice latency by
using a large batch size, and amortize the expensive I/O
operations among different memory hierarchies over a large
batch of inputs, overlapped with computation. Fig. 1 shows
the latency-throughput trade-off of three inference systems
with offloading on a single NVIDIA T4 (16 GB) GPU. Note
that the performance in terms of latency and throughput on
limited resources is significantly inferior to that of the cases
with sufficient resources.

Achieving high-throughput generative inference with lim-
ited GPU memory is challenging even if we can sacrifice
the latency. The first challenge is to design an efficient of-
floading strategy. During generative inference, there are
three kinds of tensors: weights, activations, and key-value
(KV) cache. The strategy should specify what tensors to of-
fload, where to offload them within the three-level memory
hierarchy, and when to offload them during inference. The
batch-by-batch, token-by-token, and layer-by-layer struc-
ture of the computation forms a complex dependency graph

where there are multiple ways to conduct computation. To-
gether, these choices form a complex design space. Existing
offloading-based inference systems (Aminabadi et al., 2022;
HuggingFace, 2022) inherit strategies from training, which
turn out to be some suboptimal points for inference, per-
forming excessive I/O and achieving throughput far below
theoretical hardware limits.

The second challenge is to develop effective compression
strategies. Previous works have demonstrated promising
results in compressing the weights and activations of LLMs.
However, when combining compression with offloading for
high-throughput inference, the I/O costs and memory reduc-
tion of the weights and KV cache become more important,
motivating alternative compression schemes.

To address these challenges, we present FlexGen, an of-
floading framework for high-throughput LLM inference.
FlexGen aggregates memory from the GPU, CPU, and disk,
and efficiently schedules I/O operations, along with possible
compression methods and distributed pipeline parallelism.

(Contribution 1) We formally define a search space of
possible offloading strategies by considering computation
schedule, tensor placement, and computation delegation.
We prove that our search space captures a computation
order with I/O complexity within 2× of optimality. We
then develop a linear programming-based search algorithm
to optimize the throughput within the search space. This
algorithm can be configured for various hardware specifica-
tions and can be easily extended to incorporate latency and
throughput constraints, thus helping to navigate the trade-
off space smoothly. Compared with existing strategies, our
solution unifies the placement of weights, activations, and
the KV cache, enabling a dramatically higher batch size
upper bound, which is key to achieving high throughput.

(Contribution 2) We show that it is possible to compress
both the weights and KV cache for LLMs like OPT-175B to
4 bits without retraining or calibration, all with negligible
accuracy loss. This is achieved through fine-grained group-
wise quantization (Shen et al., 2020), which is suitable for
reducing I/O costs and memory usage during offloading.

(Contribution 3) We demonstrate the efficiency of FlexGen
by running OPT-175B on NVIDIA T4 (16GB) GPUs. Com-
pared to DeepSpeed Zero-Inference (Aminabadi et al.,
2022) and Hugging Face Accelerate (HuggingFace, 2022),
two state-of-the-art offloading-based inference systems,
FlexGen often allows a batch size that is orders of mag-
nitude larger. As a result, FlexGen can achieve much higher
throughputs. On a single T4 GPU with 208 GB CPU DRAM
and 1.5 TB SSD, input sequence length 512, and output se-
quence length 32:

• With the same latency of 5000 seconds, FlexGen (effec-
tive batch size 64, or 2048 tokens in total) can achieve
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Contributions

▶ A strategy space considering computation schedule, tensor placement, and
computation delegation.

▶ Compression of both the weights and KV cache without retraining or
calibration.

▶ Experiments of OPT-175B on NVIDIA T4 (16GB) showing 100x/40x higher
throughput with/without compression.



Background: LLM Inference



Generative Inference

A typical LLM generative inference task consists of two stages, the prefill stage
and the decoding stage.

During the prefill phase, the cached key and value vectors for each transformer
layer is calculated.

xi
K = xi ·wi

K ; xi
V = xi ·wi

V ; xi
Q = xi ·wi

Q

xi
Out = Softmax(

xi
Qx

i
K

T

√
h

) · xi
V ·wi

O + xi

xi+1 = relu(xi
Out ·w1) ·w2 + xi

Out



Generative Inference (Cont’d)

During the decoding phase, given ti as the embedding of the current generated
token in the i-th layer:

xi
K ← Concat(xi

K), t
i ·wi

K ; xi
V ← Concat(xi

V ), t
i ·wi

V ; tiQ = ti ·wi
Q

tiOut = Softmax(
tiQx

i
K

T

√
h

) · xi
V ·wi

O + ti

ti+1 = relu(tiOut ·w1) ·w2 + tiOut



Memory Analysis

Denote the batch size by b, the input sequence length by s, the output sequence
length by n, the hidden dimensions of the Transformer and MLP layers by h1 and
h2, and the number of layers by l.

The model weights is roughly (ignoring the embedding layer) l(8h2
1 + 4h1h2)

bytes and the peak KV cache is 4blh1(s+ n).

The OPT-175B (l = 96, h1 = 12288, h2 = 49152) model takes 325 GB. With
b = 512, s = 512, and n = 32, the KV cache is 1.2 TB, which is 3.8× the model
weights.



Offloading Strategy



Problem Formulation

The generative inference with offloading is formulated as a graph traversal
problem. In the figure, a square means the computation of a GPU batch for a
layer. The squares with the same color share the same layer weights.

FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU

During the decode phase, given ti ∈ Rb×1×h1 as the em-
bedding of the current generated token in the i-th layer, the
inference computation needs to i) update the KV cache:

xi
K ← Concat

(
xi
K , ti ·wi

K

)

xi
V ← Concat

(
xi
V , t

i ·wi
V

)

and ii) compute the output of the current layer:

tiQ = ti ·wi
Q

tiOut = fSoftmax

(
tiQxi

K
T

√
h

)
· xi

V ·wi
O + ti

ti+1 = frelu
(
tiOut ·w1

)
·w2 + tiOut

Memory Analysis. The memory footprint of LLM infer-
ence mainly comes from the model weights and the KV
cache. Considering the OPT-175B model in FP16, the total
number of bytes to store the parameters can be roughly 1

calculated by l(8h2
1 + 4h1h2). The total number of bytes to

store the KV cache in peak is 4× blh1(s+ n).

In a realistic setting with a sufficient number of GPUs, the
OPT-175B model (l = 96, h1 = 12288, h2 = 49152) takes
325 GB. With a batch size of b = 512, an input sequence
length s = 512, and an output sequence length of n = 32,
the total memory required to store the KV cache is 1.2 TB,
which is 3.8× the model weights, making the KV cache a
new bottleneck of large-batch high-throughput inference. In
FlexGen, for OPT-175B, we enlarge the effective batch size
to 256 to achieve the throughput at 0.69 token/s.

Throughput and Latency. Considering an effective batch
size b, an input sequence length s, and an output sequence
length of n, the latency t is defined as the total number of
seconds spent to process the prompts and generate all the
bn tokens. The generation throughput is defined as bn/t.

Token 0 Token 1 Token 2
layer

Dataset
(infinite)

	 	

	 	

	 	

	 	

batch

Figure 2. Computational graph of LLM inference.

4. Offloading Strategy
In this section, we do not relax any computation of LLM
inference and illustrate how to formalize the offloading
procedure under the GPU, CPU, and disk memory hierarchy.
We first formulate the problem and then construct the search
space of the possible offloading strategies in FlexGen. To
find an efficient strategy, FlexGen builds an analytical cost
model and searches for configurations with an optimizer
based on linear programming.

1We ignore the embedding layer(s), which is relatively small.

4.1. Problem Formulation

Consider a machine with three devices: a GPU, a CPU, and
a disk. The GPU and CPU can perform computation while
the disk cannot. The three devices form a three-level mem-
ory hierarchy where the GPU has the smallest but fastest
memory and the disk has the largest but slowest memory.
When an LLM cannot fit entirely within the GPU, we need
to offload it to secondary storage and perform computation
part-by-part by partially loading the LLM.

We formulate the generative inference with offloading as a
graph traversal problem. Fig. 2 shows an example computa-
tional graph, where the model has 4 layers and we generate
3 tokens per prompt. As our focus is throughput-oriented
scenarios, we assume a given dataset with an infinite number
of prompts that need to be processed. In the figure, a square
means the computation of a GPU batch for a layer. The
squares with the same color share the same layer weights.
We define a valid path as a path that traverses (i.e., computes)
all squares, while subject to the following constraints:

• A square can only be computed if all squares to its left
on the same row were computed.

• To compute a square on a device, all its inputs (weights,
activations, cache) must be loaded to the same device.

• After being computed, a square produces two outputs:
activations and KV cache. The activations should be
stored until its right sibling is computed. The KV cache
should be stored until the rightmost square on the same
row is computed.

• At any time, the total size of tensors stored on a device
cannot exceed its memory capacity.

The goal is to find a valid path that minimizes the total
execution time, which includes the compute cost and I/O
cost when moving tensors between devices.

4.2. Search Space

Given the formulation above, we construct a search space
for possible valid strategies in FlexGen.

Compute schedule. Intuitively, there are two orders to
traverse the graph in Fig. 2: row-by-row and column-by-
column. All existing systems (Aminabadi et al., 2022; Hug-
gingFace, 2022) traverse the graph row-by-row, as shown in
Fig. 3(a). This is reasonable because it is the fastest way to
finish the generation for one batch and the KV cache can be
freed immediately after a row. However, because every two
contiguous squares do not share weights, this schedule has
to repeatedly load the weights and incurs huge I/O costs.

To reduce the I/O costs of the weights, we can traverse the
graph column-by-column. All squares in a column share
weights, so we can let the weights stay on GPU for reusing
and only load/unload the activations and KV cache. How-
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Problem Formulation (Cont’d)

A valid path is a path that traverses all squares under the following constraints:

▶ A square can only be computed if all squares to its left on the same row
were computed.

▶ To compute a square on a device, all its inputs must be loaded to the same
device.

▶ After being computed, a square produces two outputs: activations and KV
cache. The activations should be stored until its right sibling is computed.
The KV cache should be stored until the rightmost square on the same row
is computed.

▶ At any time, the total size of tensors stored on a device cannot exceed its
memory capacity.



Objective

The goal is to find a valid path that minimizes the total execution time, which
includes the compute cost and I/O cost when moving tensors between devices.



Compute Schedule
All existing systems traverse the graph row-by-row to reduce latency.FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU

Token 0 Token 1 Token 2
layer

Dataset
(infinite)

	 	

	 	

	 	

	 	

batch

(a) Row-by-row schedule

Dataset
(infinite)

	 	

	 	

	 	

	 	

batch

block

(b) Zig-zag block schedule

Figure 3. Two different schedules. The red arrows denote the com-
putation order.

Algorithm 1 Block Schedule with Overlapping
for i = 1 to generation length do

for j = 1 to num layers do
// Compute a block with multiple GPU batches
for k = 1 to num GPU batches do

// Load the weight of the next layer
load weight(i, j + 1, k)
// Store the cache and activation of the prev batch
store activation(i, j, k − 1)
store cache(i, j, k − 1)
// Load the cache and activation of the next batch
load cache(i, j, k + 1)
load activation(i, j, k + 1)
// Compute this batch
compute(i, j, k)
// Synchronize all devices
synchronize()

end for
end for

end for

ever, we cannot traverse a column all the way to the end
because the activations and KV cache still need to be stored.
Hence, we have to stop when they fill the CPU and disk
memory. Taking all this into consideration, we converge to
a zig-zag block schedule, as shown in Fig. 3(b). Besides,
we propose another more advanced and I/O-optimal sched-
ule, but only implement the simpler block schedule due to
the practical implementation difficulty of the optimal one.
However, we prove that the block schedule is at most twice
worse than the optimal schedule in Appendix A.2.

Theorem 4.1. The I/O complexity of the zig-zag
block schedule is within 2× of the optimal solution.

Another typical optimization is overlapping. We can overlap
the weights load of the next layer, cache/activation load of
the next batch, cache/activation store of the previous batch,
and the computation of the current batch. Adding overlap-
ping to the block schedule results in Algorithm 1. The first
six functions in the innermost loop can be seen as launched

in parallel with six logical threads because there are no de-
pendencies. The last function then synchronizes these six
logical threads. We rely on operating systems and CUDA
drivers to resolve the schedule of the underlying hardware
resources. As a conclusion, the algorithm introduces two
parameters into our search space: the GPU batch size and
the number of GPU batches in a block. The product of the
GPU batch size and the number of GPU batches is called
block size (or effective batch size).

Tensor placement. Besides compute schedule, a strategy
should specify how to store these tensors within the memory
hierarchy. We use three variables wg, wc, and wd to define
the percentages of weights stored on GPU, CPU, and disk
respectively. Similarly, we use three variables hg, hc, hd to
define the percentages of activations and use cg, cc, cd for
the KV cache. Given the percentages, there are still multiple
ways to partition the tensors. Taking weight tensors as an
example, from coarse grain to fine grain, we can partition
the weights at the model granularity (e.g., assign 50% of
the layers in a model to the GPU), at the layer granularity
(e.g., assign 50% of the tensors in a layer to the GPU), or
at the tensor granularity (e.g., assign 50% of the elements
in a tensor to the GPU). Coarser granularity leads to lower
runtime overhead but it is less flexible and its cost is difficult
to analyze. Considering both the runtime overhead and
desired flexibility, we use layer granularity for weights, and
tensor granularity for activations and the KV cache.

Computation delegation. While CPUs are much slower
than GPUs, we find using CPU compute can still be ben-
eficial in some cases. This is because the computation of
attention scores during decoding is I/O-bounded. Consider a
case where the KV cache is stored on the CPU. Computing
the attention scores on the GPU requires moving the entire
KV cache to the GPU, which incurs a substantial I/O cost as
the KV cache is huge. In contrast, computing the attention
score on the CPU does not require moving the KV cache. It
only requires moving the activations from the GPU to the
CPU. Quantitatively, let b be the GPU batch size, s be the
sequence length, and h1 be the hidden size. The size of the
moved KV cache is b× s×h1× 4 bytes, and the size of the
moved activation is b×h1×4 bytes, so computing attention
score on CPU reduces I/O by s×. For long sequences (e.g.,
s ≥ 512), it is better to compute the attention scores on the
CPU if the associated KV cache is not stored on the GPU.

4.3. Cost Model and Policy Search

The schedule and placement in Section 4.2 constructs a
search space with several parameters. Now we develop an
analytical cost model to estimate the execution time given
these algorithm parameters and hardware specifications.

Cost Model. The cost model predicts the latency during
prefill for one layer denoted as Tpre, and the averaged la-
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The zig-zag block schedule reduces I/O costs by reusing the weights and KV
cache for multiple batches. It introduces two parameters into the search space:
the GPU batch size and the number of GPU batches in a block.



Compute Schedule with Overlapping

Another typical optimization is
overlapping the weights load of the
next layer, cache/activation load of
the next batch, cache/activation
store of the previous batch, and the
computation of the current batch.
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Algorithm 1 Block Schedule with Overlapping
for i = 1 to generation length do

for j = 1 to num layers do
// Compute a block with multiple GPU batches
for k = 1 to num GPU batches do

// Load the weight of the next layer
load weight(i, j + 1, k)
// Store the cache and activation of the prev batch
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load activation(i, j, k + 1)
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// Synchronize all devices
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end for
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ever, we cannot traverse a column all the way to the end
because the activations and KV cache still need to be stored.
Hence, we have to stop when they fill the CPU and disk
memory. Taking all this into consideration, we converge to
a zig-zag block schedule, as shown in Fig. 3(b). Besides,
we propose another more advanced and I/O-optimal sched-
ule, but only implement the simpler block schedule due to
the practical implementation difficulty of the optimal one.
However, we prove that the block schedule is at most twice
worse than the optimal schedule in Appendix A.2.

Theorem 4.1. The I/O complexity of the zig-zag
block schedule is within 2× of the optimal solution.

Another typical optimization is overlapping. We can overlap
the weights load of the next layer, cache/activation load of
the next batch, cache/activation store of the previous batch,
and the computation of the current batch. Adding overlap-
ping to the block schedule results in Algorithm 1. The first
six functions in the innermost loop can be seen as launched

in parallel with six logical threads because there are no de-
pendencies. The last function then synchronizes these six
logical threads. We rely on operating systems and CUDA
drivers to resolve the schedule of the underlying hardware
resources. As a conclusion, the algorithm introduces two
parameters into our search space: the GPU batch size and
the number of GPU batches in a block. The product of the
GPU batch size and the number of GPU batches is called
block size (or effective batch size).

Tensor placement. Besides compute schedule, a strategy
should specify how to store these tensors within the memory
hierarchy. We use three variables wg, wc, and wd to define
the percentages of weights stored on GPU, CPU, and disk
respectively. Similarly, we use three variables hg, hc, hd to
define the percentages of activations and use cg, cc, cd for
the KV cache. Given the percentages, there are still multiple
ways to partition the tensors. Taking weight tensors as an
example, from coarse grain to fine grain, we can partition
the weights at the model granularity (e.g., assign 50% of
the layers in a model to the GPU), at the layer granularity
(e.g., assign 50% of the tensors in a layer to the GPU), or
at the tensor granularity (e.g., assign 50% of the elements
in a tensor to the GPU). Coarser granularity leads to lower
runtime overhead but it is less flexible and its cost is difficult
to analyze. Considering both the runtime overhead and
desired flexibility, we use layer granularity for weights, and
tensor granularity for activations and the KV cache.

Computation delegation. While CPUs are much slower
than GPUs, we find using CPU compute can still be ben-
eficial in some cases. This is because the computation of
attention scores during decoding is I/O-bounded. Consider a
case where the KV cache is stored on the CPU. Computing
the attention scores on the GPU requires moving the entire
KV cache to the GPU, which incurs a substantial I/O cost as
the KV cache is huge. In contrast, computing the attention
score on the CPU does not require moving the KV cache. It
only requires moving the activations from the GPU to the
CPU. Quantitatively, let b be the GPU batch size, s be the
sequence length, and h1 be the hidden size. The size of the
moved KV cache is b× s×h1× 4 bytes, and the size of the
moved activation is b×h1×4 bytes, so computing attention
score on CPU reduces I/O by s×. For long sequences (e.g.,
s ≥ 512), it is better to compute the attention scores on the
CPU if the associated KV cache is not stored on the GPU.

4.3. Cost Model and Policy Search

The schedule and placement in Section 4.2 constructs a
search space with several parameters. Now we develop an
analytical cost model to estimate the execution time given
these algorithm parameters and hardware specifications.

Cost Model. The cost model predicts the latency during
prefill for one layer denoted as Tpre, and the averaged la-
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Tensor Placement

FlexGen uses variables wg, wc, and wd to define the percentages of weights
stored on GPU, CPU, and disk, hg, hc, and hd to define the percentages of
activations, and cg, cc, cd for the KV cache.

FlexGen uses layer granularity (e.g., assign 50% of the tensors in a layer to the
GPU) for weights, and tensor granularity (e.g., assign 50% of the elements in a
tensor to the GPU) for activations and the KV cache.



Computation Delegation

Using CPU for computation can be beneficial when the computation is

I/O-bounded. Take the computation of attention scores Softmax(
tiQxi

K
T

√
h

) as
example: the size of the moved KV cache is b× s× h1 × 4 bytes, and the size of
the moved activation is b× h1 × 4. For long sequences (e.g., s ≥ 512), it is
better to compute the attention scores on the CPU if the associated KV cache is
not stored on the GPU.



Cost Model

The total latency for computing a block can be estimated as

T = Tpre · l + Tgen · (n− 1) · l
where Tpre and Tgen are the estimated latencies of the prefill stage and the
decoding stage for one layer.



Cost Model (Cont’d)

Assuming perfect overlapping, Tpre can be esitmated as

Tpre = max(ctogp, gtocp, dtocp, ctodp, compp)

where ctogp, gtocp, dtocp, ctodp, and compp denote the latency of read from
CPU to GPU, write from GPU to CPU, read from disk to CPU, write from CPU
to disk, and computation, respectively, during prefill for one layer.

Similarly, Tgen can be esitmated as

Tgen = max(ctogg, gtocg, dtocg, ctodg, compg)



Cost Model Example

I/O terms like dtocg are estimated by summing up the I/O events, which contain
weights, activations, and cache reads.

The size of FP16 weights for one Transformer layer is 8h2
1 + 4h1 · h2 bytes. Let

bls denote the block size and s be the prompt length. The size of the activation
for one layer is 2 · bls · h1 and the size of KV cache for one layer on average is
4 · bls · (s+ n

2
) · h1.

Since wd, hd, and cd percent of weights, activations, and KV cache are load
from disk, the total latency of disk read is

dtocg =
1

bandwidth
((8h2

1+4h1 ·h2) ·wd+2 · bls ·h1 ·hd+4 · bls · (s+ n

2
) ·h1 · cd)



Policy Search

A policy includes 11 variables: block size bls, GPU batch size gbs, and 9
percentages for tensor placement.

FlexGen first enumerate a few choices of (bls, gbs) tuple. With fixed bls, gbs,
the best placement becomes a linear programming problem.
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tency during decoding for one layer denoted as Tgen in one
block. The total latency for computing a block can then be
estimated as T = Tpre · l+ Tgen · (n− 1) · l, where l is the
number of layers and n is the number of tokens to generate.

Assuming perfect overlapping, Tpre can be estimated as
Tpre = max(ctogp, gtocp, dtocp, ctodp, compp), where
ctogp, gtocp, dtocp, ctodp, compp denote the latency of
read from CPU to GPU, write from GPU to CPU, read
from disk to CPU, write from CPU to disk, computation,
respectively, during prefill for one layer.

Similarly, Tgen can be estimated as Tgen =
max(ctogg, gtocg, dtocg, ctodg, compg), with ctogg,
gtocg, dtocg, ctodg, compg denoting the latency of read
from CPU to GPU, write from GPU to CPU, read from disk
to CPU, write from CPU to disk, computation, respectively,
during decoding for one layer.

For I/O terms like dtocg , it is estimated by summing up the
I/O events, which contain weights, activations, and cache
reads. The size of FP16 weights for one transformer layer
is 8h2

1 + 4h1 · h2 bytes, with h1 denoting the hidden size,
and h2 denoting the hidden size of the second MLP layer.
Let bls be the block size and s be the prompt length; then
the size of activations for one layer is 2 · bls ·h1. The size of
the KV cache for one layer on average is 4 · bls · (s+ n

2 ) ·h1.
We have to load wd, hd, cd percent of weights, activations,
and the KV cache from the disk respectively so that the total
latency of disk read is dtocg = 1

disk to cpu bandwidth ((8h
2
1 +

4h1 · h2) ·wd+4 · bls · (s+ n
2 ) · h1 · cd+2 · bls · h1 · hd).

Similarly for computation terms, we sum up all computation
events, including matrix multiplications and batched matrix
multiplications on the CPU and the GPU.

Besides latency estimation, we also estimate the peak mem-
ory usage of the GPU, CPU, and disk, and then we add
memory constraints. The full cost model is in Appendix A.3.

Policy Search. A policy includes 11 variables: block size
bls, GPU batch size gbs, weight placement wg,wc, wd,
activation placement hg, hc, hd, and KV cache placement
cg, cc, cd. In practice, the percentage cannot be an arbitrary
real number between 0 and 1, because the tensor cannot
be split arbitrarily. However, we relax the percentage vari-
ables in the cost model to be any real number between 0
and 1 since it is changing gradually. We solve the problem
as a two-level optimization problem. We first enumerate a
few choices of (bls, gbs) tuple. Typically, gbs is a multi-
ple of 4, and bls is less than 20 so there are not too many
choices. Then with the fixed bls, gbs, finding the best place-
ment p = (wg,wc, wd, cg, cc, cd, hg, hc, hd) becomes a
linear programming problem shown in Eq. (1). The linear
programming problem can be solved very quickly because
there are only 9 variables. This formulation can also be
flexibly extended to include latency constraints and model

approximate methods such as compression.

min
p

T/bls

s.t. gpu peak memory < gpu mem capacity
cpu peak memory < cpu mem capacity
disk peak memory < disk mem capacity

wg + wc+ wd = 1
cg + cc+ cd = 1
hg + hc+ hd = 1

(1)

To use the cost model, we run profiling on the hardware to
sample some data points and fit the hardware parameters.
We then call the optimizer to get an offloading policy. Due to
our relaxation and the hardness of accurately modeling peak
memory usage (e.g., fragmentation), sometimes a strategy
from the policy search can run out of memory. In this case,
we manually adjust the policy slightly. The cost model can
usually return a good policy, but it is common that a better
policy can be obtained by tuning manually.

4.4. Extension to Multiple GPUs

We discuss how to extend the offloading strategy in FlexGen
if there are multiple GPUs. Although we can find a nearly
optimal strategy for one GPU, the strategy is still heavily
limited by I/O and has a low GPU utilization. If we are
given more GPUs and more CPUs, model parallelism can be
utilized to reduce the memory pressure of each GPU, which
can potentially lead to a super-linear scaling in decoding.

There are two kinds of model parallelisms: tensor and
pipeline parallelism (Narayanan et al., 2021; Zheng et al.,
2022). Tensor parallelism can reduce the single-query la-
tency but pipeline parallelism can achieve good scaling on
throughput due to its low communication costs. Since we
target throughput, FlexGen implements pipeline parallelism.

We use pipeline parallelism by equally partitioning an l-
layer LLM on m GPUs, and then the execution of all GPUs
follows the same pattern. The problem is reduced to run-
ning an n/m-layer transformer on one GPU. We can di-
rectly reuse the policy search developed for one GPU. To
achieve micro-batch pipelining, a new for-loop is added to
Algorithm 1 to combine the iteration-level pipeline parallel
execution schedule (Huang et al., 2019; Yu et al., 2022) with
our single-device offloading runtime.

5. Approximate Methods
The previous section focuses on the exact computation.
However, the inference throughput can be greatly boosted
with negligible accuracy loss by allowing some approxima-
tions, because LLMs are typically robust to careful approxi-
mations. This section introduces two such approximations:
group-wise quantization and sparse attention.
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Extension to Multiple GPUs

Tensor parallelism can reduce the single-query latency but pipeline parallelism can
achieve good scaling on throughput due to its low communication costs.

FlexGen implements pipeline parallelism by equally partitioning an l-layer LLM on
m GPUs.



Approximate Methods



Group-wise Quantization

FlexGen direclty quantize both the weights and KV cache into 4-bit integers
without any retraining or calibration.

Given a tensor, FlexGen choose g continous elements along a certain dimension
as a group. For each group, the min and max are calculated and each element x
is quantized as

xquant = round(
x−min

max−min
× (2b − 1))



Group-wise Quantization (Cont’d)

FlexGen uses 4 bits quantization with a group size of 64. The weights are
grouped along the output channel dimension and the KV cache are grouped
along the hidden dimension.

Fine-grained group-wise quantization in FlexGen causes some overhead in
compression and decompression. Such an overhead could be very significant if
run on a CPU which makes the CPU delegation useless, so FlexGen turns off the
CPU delegation when enabling quantization.



Sparse Attention

After computing the attention matrices, for each query, FlexGen calculates the
indices of the Top-K tokens from the K cache, then simply drops other tokens
and only loads the subset of the V cache according to the indices.



Experiments



Experimental Setup

Hardware:
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Group-wise Quantization. We show that both the weights
and KV cache can be directly quantized into 4-bit integers
without any retraining or calibration on OPT-175B, all while
preserving similar accuracy (Section 6.2). When compared
to some related works (Yao et al., 2022; Dettmers et al.,
2022; Xiao et al., 2022) that try to use integer matrix mul-
tiplication mainly for accelerated computation, the goal of
quantization in our case is primarily for compression and
reducing I/O costs. Therefore, we can choose a fine-grained
quantization format in favor of a high compression ratio and
dequantize the tensors back to FP16 before computation.
We use a fine-grained group-wise asymmetric quantization
method (Shen et al., 2020). Given a tensor, we choose g
contiguous elements along a certain dimension as a group.
For each group, we compute the min and max of the group
elements and quantize each element x into b-bit integers by
xquant = round

(
x−min

max−min × (2b − 1)
)

.

The tensors are stored in the quantized format and converted
back to FP16 before computation. Since both the weights
and KV cache consume a significant amount of memory, we
compress both to 4 bits with a group size of 64. There are
multiple ways to choose which dimension to group on. We
find that grouping the weights along the output channel di-
mension and the KV cache along the hidden dimension pre-
serves the accuracy while being runtime-efficient in practice.
One thing to mention is that such a fine-grained group-wise
quantization in FlexGen causes some overhead in compres-
sion and decompression. Such an overhead could be very
significant if run on a CPU which makes the CPU delegation
useless, so we turn off the CPU delegation when enabling
quantization. A concurrent work (Dettmers & Zettlemoyer,
2022) also finds that 4-bit precision is almost optimal for
total model bits and zero-shot accuracy on OPT models.
Compared to this previous work, we first propose to com-
press the KV cache and present the results on OPT-175B.

Sparse Attention. We demonstrate that the sparsity of
self-attention can be exploited by only loading the top 10%
attention value cache on OPT-175B, all while maintaining
the model quality. We present one simple Top-K sparse
approximation. After computing the attention matrices, for
each query, we calculate the indices of its Top-K tokens
from the K cache. We then simply drop the other tokens and
only load a subset of the V cache according to the indices.

The application of these approximations is straightforward.
We present these preliminary but interesting results and
intend to emphasize that FlexGen is a general framework
that can seamlessly plug in many approximation methods.

6. Evaluation
Hardware. We run experiments on the NVIDIA T4 GPU in-
stances from Google Cloud. The hardware specifications are

Table 1. Hardware Specs
Device Model Memory

GPU NVIDIA T4 16 GB
CPU Intel Xeon @ 2.00GHz 208 GB
Disk Cloud default SSD (NVMe) 1.5 TB

listed in Table 1. The read bandwidth of SSD is about 2GB/s
and the write bandwidth is about 1GB/s. Our methods and
implementations do not depend on specific hardware archi-
tectures. Some architecture (e.g. unified memory) could
be more friendly to our method. See Appendix A.4 for
discussions and experiments on different hardware setups.

Model. OPT models (Zhang et al., 2022) with 6.7B to 175B
parameters are used in the evaluation. Although we do not
evaluate other models, the offloading in FlexGen can be ap-
plied to other transformer LLMs, e.g., GPT-3 (Brown et al.,
2020), PaLM (Chowdhery et al., 2022), and BLOOM (Scao
et al., 2022) because they all share a similar structure.

Workload. Our focus is high-throughput generation on a
given dataset. We use synthetic datasets where all prompts
are padded to the same length. The system is required to
generate 32 tokens for each prompt. We test two prompt
lengths: 512 and 1024 (for experiments in more settings,
see Appendix A.4). The evaluation metric is generation
throughput, defined as the number of generated tokens /
(prefill time + decoding time). Sometimes running a full
batch takes too long for certain systems — in this cases, we
generate fewer tokens and project the final throughput. We
use dummy model weights in throughput benchmarks for
all systems and real weights for accuracy evaluations.

Baseline. We use DeepSpeed ZeRO-Inference (Aminabadi
et al., 2022) and Hugging Face Accelerate (HuggingFace,
2022) as baselines. They are the only systems that can run
LLMs with offloading when there is not enough GPU mem-
ory. DeepSpeed supports offloading the whole weights to
the CPU or disk. It uses ZeRO data parallelism if there are
multiple GPUs. Accelerate supports offloading a fraction of
the weights. It does not support distributed GPUs on differ-
ent machines. Both of them use the row-by-row schedule
and can only put cache/activations on GPU. These systems
support different quantization methods. However, the quan-
tization in Accelerate is not compatible with offloading, and
the quantization in DeepSpeed cannot preserve accuracy up
to 175B, so we do not enable quantization on these systems.
In addition to offloading, decentralized collaborative infer-
ence is another option to lower the resource requirement for
LLM inference. Thus, we also include Petals (Borzunov
et al., 2022; Ryabinin et al., 2023) as an additional baseline.

Implementation. FlexGen is implemented on top of
PyTorch (Paszke et al., 2019). FlexGen manages multi-
ple CUDA streams and CPU threads to overlap I/O with
compute. FlexGen creates files for tensors stored on the disk
and maps them as virtual memory to access them.
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Models: OPT models with 6.7B to 175B parameters.

Workloads: Synthetic datasets with all prompts padded to the 512/1024 tokens.
The system is required to generate 32 tokens for each prompt.

Implementation: FlexGen is implemented on top of PyTorch. FlexGen manages
multiple CUDA streams and CPU threads to overlap I/O with compute. FlexGen
creates files for tensors stored on the disk and maps them as virtual memory to
access them.



Baselines

DeepSpeed Zero-Inference supports offloading the whole weights to CPU or
disk. It uses ZeRO data parallelism when given multiple GPUs.

Hugging Face Accelerate supports offloading a fraction of the weights.

Petals lowers the resource requirements for LLM inference with decentralized
collaborative inference.



Maximum Throughput Benchmark

For OPT-175B, baseline systems can only use a GPU batch size of 2, but
FlexGen can use a GPU batch size of 32 and a block size of 32 × 8, achieving a
69× higher throughput
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6.1. Offloading

Maximum throughput benchmark. We first evaluate the
maximum generation throughput the systems can achieve
with one GPU on two prompt lengths. As shown in Table 2,
FlexGen outperforms all baselines in all cases. On OPT-
6.7B, Accelerate and FlexGen can successfully fit the whole
model into a single GPU, so they choose to only use the
GPU. DeepSpeed has a higher memory overhead and cannot
fit OPT-6.7B into the GPU, so it uses slower CPU offload-
ing. On OPT-30B, all systems switch to CPU offloading.
DeepSpeed and Accelerate store the KV cache on the GPU,
so they cannot use a very large batch size, while FlexGen
offloads most weights and all KV cache to the CPU and en-
ables a larger GPU batch size. In addition, FlexGen reuses
the weights by block scheduling. On OPT-175B, all systems
start to offload the weights to the disk. Baseline systems can
only use a maximum batch size of 2, but FlexGen can use
a GPU batch size of 32 and a block size of 32× 8, achiev-
ing a 69× higher throughput. With compression enabled,
FlexGen achieves a 112× higher generation throughput on
a single GPU for prompt sequence length 512. This huge
improvement is because FlexGen uses an effective batch
size of 144 and compresses the weights and KV cache to
fit into CPU memory to avoid slow disk swapping. More
details on the policy setups and effective batch sizes can
be found in Appendix A.4. More experiments on how disk
specification affects the throughput see Appendix A.4.

Table 3 shows the results on 4 machines, with one GPU on
each machine. OPT-30B or OPT-175B still cannot fit into
4 GPUs. Naively, we can run 4 independent FlexGen in
a data-parallel fashion to get a linear scaling on through-
put. But here we show that pipeline parallelism can achieve
super-linear scaling on decoding throughput. With pipeline
parallelism, the memory pressure of each machine is re-
duced so we can switch from small batch sizes to larger
batch sizes, or switch from disk offloading to CPU-only
offloading. In Table 3, FlexGen does not achieve linear
scaling on generation throughput (which counts both prefill
and decoding time costs). This is because there are pipeline
bubbles during the prefill stage and our workload settings
only generate 32 tokens. However, FlexGen achieves super-
linear scaling on decoding throughput (which only counts
decoding time costs assuming the prefill is done). This
means if we generate more tokens, pipeline parallelism will
show its benefits as decoding time will dominate.

Latency-throughput trade-off. We configure these sys-
tems to achieve maximum throughput under various la-
tency constraints and draw their latency-throughput trade-
off curves in Fig. 1. FlexGen sets a new Pareto-optimal
frontier that significantly outperforms baselines. On the
low-latency side, FlexGen supports partial offloading and
uses more space for weights. On the high-throughput side,

Table 2. Generation throughput (token/s) of different systems. Ac-
celerate, DeepSpeed, and FlexGen use 1 GPU. Petals uses 1 GPU
for OPT-6.7B, 4 GPUs for OPT-30B, and 24 GPUs for OPT-175B,
but reports per-GPU throughput. We benchmark Petals under a
good network assumption with a delay of less than 10ms and band-
width of 1 Gbps. The models are run in INT8 as the default for
Petals. See Section 6.3 for more details about Petals. FlexGen is
our system without compression; FlexGen (c) uses 4-bit compres-
sion. “OOM” means out-of-memory.

Seq. length 512 1024

Model size 6.7B 30B 175B 6.7B 30B 175B

Accelerate 25.12 0.62 0.01 13.01 0.31 0.01
DeepSpeed 9.28 0.60 0.01 4.59 0.29 OOM
Petals 8.25 2.84 0.08 6.56 1.51 0.06
FlexGen 25.26 7.32 0.69 13.72 3.50 0.35

FlexGen (c) 29.12 8.70 1.12 13.18 3.98 0.42

Table 3. The scaling performance on 4 GPUs. The prompt se-
quence length is 512. The number of GPUs is denoted in the
parenthesis. Generation throughput (token/s) counts the time cost
of both prefill and decoding while decoding throughput only counts
the time cost of decoding assuming prefill is done.

Metric Generation Throughput Decoding Throughput

Model size 6.7B 30B 175B 6.7B 30B 175B

FlexGen (1) 25.26 7.32 0.69 38.28 11.52 0.83
FlexGen (4) 201.12 23.61 2.33 764.65 48.94 3.86
DeepSpeed (4) 50.00 6.40 0.05 50.20 6.40 0.05

FlexGen aggressively offloads all things out of the GPU
to achieve a large GPU batch size and block size. Given
the same latency requirement of 5000 seconds, FlexGen
without compression can achieve a 40× higher through-
put compared to DeepSpeed and Accelerate. If allowing a
higher latency and compression, FlexGen can further boost
throughput and reach a 100× improvement by using an ef-
fective batch size of 144. In this case, compression enables
FlexGen to fit all things in the CPU memory and avoid disk
I/O. The detailed latency, throughput, and policy setup can
be found in Appendix A.4.

Runtime breakdown. We shows the runtime breakdown
of OPT-175B on FlexGen in Table 8 in Appendix A.4. We
disable overlapping and profile the time used for major
components. The GPU compute utilization is 82% and 13%
for prefill and decoding, respectively.

Ablation study. We then isolate the improvement brought
by each individual technique. Table 4 lists the throughput
FlexGen can achieve if disabling one technique at a time.
On OPT-30B, with all optimizations enabled, we put 20%
weights on GPU, 80% weights on CPU, and all activations
and KV cache to CPU. We also choose a GPU batch size of
48 and a block size of 48× 3. “No policy search” illustrates
the performance of worse strategies, showing the importance
of a good policy. On both models, using CPU compute
and overlapping brings non-trivial improvement. We also
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Maximum Throughput Benchmark with Multiple GPUs

FlexGen achieves super-linear scaling on decoding throughput with pipeline
parallelism.
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6.1. Offloading

Maximum throughput benchmark. We first evaluate the
maximum generation throughput the systems can achieve
with one GPU on two prompt lengths. As shown in Table 2,
FlexGen outperforms all baselines in all cases. On OPT-
6.7B, Accelerate and FlexGen can successfully fit the whole
model into a single GPU, so they choose to only use the
GPU. DeepSpeed has a higher memory overhead and cannot
fit OPT-6.7B into the GPU, so it uses slower CPU offload-
ing. On OPT-30B, all systems switch to CPU offloading.
DeepSpeed and Accelerate store the KV cache on the GPU,
so they cannot use a very large batch size, while FlexGen
offloads most weights and all KV cache to the CPU and en-
ables a larger GPU batch size. In addition, FlexGen reuses
the weights by block scheduling. On OPT-175B, all systems
start to offload the weights to the disk. Baseline systems can
only use a maximum batch size of 2, but FlexGen can use
a GPU batch size of 32 and a block size of 32× 8, achiev-
ing a 69× higher throughput. With compression enabled,
FlexGen achieves a 112× higher generation throughput on
a single GPU for prompt sequence length 512. This huge
improvement is because FlexGen uses an effective batch
size of 144 and compresses the weights and KV cache to
fit into CPU memory to avoid slow disk swapping. More
details on the policy setups and effective batch sizes can
be found in Appendix A.4. More experiments on how disk
specification affects the throughput see Appendix A.4.

Table 3 shows the results on 4 machines, with one GPU on
each machine. OPT-30B or OPT-175B still cannot fit into
4 GPUs. Naively, we can run 4 independent FlexGen in
a data-parallel fashion to get a linear scaling on through-
put. But here we show that pipeline parallelism can achieve
super-linear scaling on decoding throughput. With pipeline
parallelism, the memory pressure of each machine is re-
duced so we can switch from small batch sizes to larger
batch sizes, or switch from disk offloading to CPU-only
offloading. In Table 3, FlexGen does not achieve linear
scaling on generation throughput (which counts both prefill
and decoding time costs). This is because there are pipeline
bubbles during the prefill stage and our workload settings
only generate 32 tokens. However, FlexGen achieves super-
linear scaling on decoding throughput (which only counts
decoding time costs assuming the prefill is done). This
means if we generate more tokens, pipeline parallelism will
show its benefits as decoding time will dominate.

Latency-throughput trade-off. We configure these sys-
tems to achieve maximum throughput under various la-
tency constraints and draw their latency-throughput trade-
off curves in Fig. 1. FlexGen sets a new Pareto-optimal
frontier that significantly outperforms baselines. On the
low-latency side, FlexGen supports partial offloading and
uses more space for weights. On the high-throughput side,

Table 2. Generation throughput (token/s) of different systems. Ac-
celerate, DeepSpeed, and FlexGen use 1 GPU. Petals uses 1 GPU
for OPT-6.7B, 4 GPUs for OPT-30B, and 24 GPUs for OPT-175B,
but reports per-GPU throughput. We benchmark Petals under a
good network assumption with a delay of less than 10ms and band-
width of 1 Gbps. The models are run in INT8 as the default for
Petals. See Section 6.3 for more details about Petals. FlexGen is
our system without compression; FlexGen (c) uses 4-bit compres-
sion. “OOM” means out-of-memory.

Seq. length 512 1024

Model size 6.7B 30B 175B 6.7B 30B 175B

Accelerate 25.12 0.62 0.01 13.01 0.31 0.01
DeepSpeed 9.28 0.60 0.01 4.59 0.29 OOM
Petals 8.25 2.84 0.08 6.56 1.51 0.06
FlexGen 25.26 7.32 0.69 13.72 3.50 0.35

FlexGen (c) 29.12 8.70 1.12 13.18 3.98 0.42

Table 3. The scaling performance on 4 GPUs. The prompt se-
quence length is 512. The number of GPUs is denoted in the
parenthesis. Generation throughput (token/s) counts the time cost
of both prefill and decoding while decoding throughput only counts
the time cost of decoding assuming prefill is done.

Metric Generation Throughput Decoding Throughput

Model size 6.7B 30B 175B 6.7B 30B 175B

FlexGen (1) 25.26 7.32 0.69 38.28 11.52 0.83
FlexGen (4) 201.12 23.61 2.33 764.65 48.94 3.86
DeepSpeed (4) 50.00 6.40 0.05 50.20 6.40 0.05

FlexGen aggressively offloads all things out of the GPU
to achieve a large GPU batch size and block size. Given
the same latency requirement of 5000 seconds, FlexGen
without compression can achieve a 40× higher through-
put compared to DeepSpeed and Accelerate. If allowing a
higher latency and compression, FlexGen can further boost
throughput and reach a 100× improvement by using an ef-
fective batch size of 144. In this case, compression enables
FlexGen to fit all things in the CPU memory and avoid disk
I/O. The detailed latency, throughput, and policy setup can
be found in Appendix A.4.

Runtime breakdown. We shows the runtime breakdown
of OPT-175B on FlexGen in Table 8 in Appendix A.4. We
disable overlapping and profile the time used for major
components. The GPU compute utilization is 82% and 13%
for prefill and decoding, respectively.

Ablation study. We then isolate the improvement brought
by each individual technique. Table 4 lists the throughput
FlexGen can achieve if disabling one technique at a time.
On OPT-30B, with all optimizations enabled, we put 20%
weights on GPU, 80% weights on CPU, and all activations
and KV cache to CPU. We also choose a GPU batch size of
48 and a block size of 48× 3. “No policy search” illustrates
the performance of worse strategies, showing the importance
of a good policy. On both models, using CPU compute
and overlapping brings non-trivial improvement. We also
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Abstract

The high computational and memory require-
ments of large language model (LLM) inference
make it feasible only with multiple high-end ac-
celerators. Motivated by the emerging demand for
latency-insensitive tasks with batched processing,
this paper initiates the study of high-throughput
LLM inference using limited resources, such as
a single commodity GPU. We present FlexGen,
a high-throughput generation engine for running
LLMs with limited GPU memory. FlexGen can
be flexibly configured under various hardware re-
source constraints by aggregating memory and
computation from the GPU, CPU, and disk. By
solving a linear programming problem, it searches
for efficient patterns to store and access tensors.
FlexGen further compresses the weights and the
attention cache to 4 bits with negligible accu-
racy loss. These techniques enable FlexGen to
have a larger space of batch size choices and
thus significantly increase maximum throughput.
As a result, when running OPT-175B on a sin-
gle 16GB GPU, FlexGen achieves significantly
higher throughput compared to state-of-the-art of-
floading systems, reaching a generation through-
put of 1 token/s for the first time with an effec-
tive batch size of 144. On the HELM bench-
mark, FlexGen can benchmark a 30B model with
a 16GB GPU on 7 representative sub-scenarios
in 21 hours. The code is available at https:
//github.com/FMInference/FlexGen.
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Figure 1. The total latency for a block and throughput trade-offs of
three offloading-based systems for OPT-175B (left) and OPT-30B
(right) on a single NVIDIA T4 (16 GB) GPU with 208 GB CPU
DRAM and 1.5TB SSD. FlexGen achieves a new Pareto-optimal
frontier with 100× higher maximum throughput for OPT-175B.
Other systems cannot further increase throughput due to out-of-
memory issues. “(c)” denotes compression.

1. Introduction
In recent years, large language models (LLMs) have
demonstrated strong performance across a wide range of
tasks (Brown et al., 2020; Bommasani et al., 2021; Zhang
et al., 2022; Chowdhery et al., 2022). Along with these un-
precedented capabilities, generative LLM inference comes
with unique challenges. These models can have billions, if
not trillions of parameters (Chowdhery et al., 2022; Fedus
et al., 2022), which leads to extremely high computational
and memory requirements to run. For example, GPT-175B
requires 325GB of GPU memory simply to load its model
weights. Fitting this model onto GPUs would require at least
five A100 (80GB) GPUs and complex parallelism strate-
gies (Pope et al., 2022; Aminabadi et al., 2022). Thus,
lowering LLM inference resource requirements has recently
attracted intense interest.

In this paper, we focus on a setting that we call throughput-
oriented generative inference. In addition to interactive
use cases such as chatbots, LLMs are also applied to many
“back-of-house” tasks such as benchmarking (Liang et al.,
2022), information extraction (Narayan et al., 2018), data
wrangling (Narayan et al., 2022), and form processing (Chen
et al., 2021). One key characteristic of these tasks is that they
often require running LLM inference in batches over a large
number of tokens (e.g., all the documents in a company’s
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Abalation Study Table 23 list the concrete policy setups
for the main ablation study result in Table 4. Table 21 and
Table 22 shows some additional ablation study on policies.
In Table 23, DeepSpeed chooses to store the KV cache
and activations on GPU. For OPT-30B, the weights will be
stored on the CPU entirely because it cannot fit in GPU. The
corresponding percentage is (0, 100, 100, 0, 100, 0). The
computation order of DeepSpeed is row-by-row, so the num-
ber of GPU batches in a block is 1. The GPU batch size is
set to be as large as possible, which is set to 8. For OPT-
175B, the weights will be stored on disk entirely according
to DeepSpeed’s strategy, since it cannot be stored on CPU.
The corresponding percentage is (0, 0, 100, 0, 100, 0). The
number of GPU batches in a block is 1, and the GPU batch
size is 2. For “No policy search”, we use different policy
changes for OPT-30B and OPT-175B to demonstrate the
impact of different policy dimensions. For OPT-30B, we
change the percentage for weights from (20, 80) to (0, 100),
and show that the throughput does not change much. For
OPT-175B, we change the number of GPU batches in a
block from 8 to 1 and show that the throughput degrades
significantly. For “No CPU compute”, it degrades OPT-30B
more than OPT-175B because the bottleneck for OPT-175B
is on disk offloading. Therefore, the gain for CPU computa-
tion is small for OPT-175B. While for OPT-30B, the disk
has not been used, so the gain for CPU computation is more
significant.

Different SSD Speed To highlight the limitation and re-
quirements of SSD speed. We tested two kinds of disk on
GCP and report the generation throughput (token/s) in Ta-
ble 24 (input sequence length = 512 and output sequence
length = 32).

Additional Hardware and Sequence Length Our methods
and implementations do not depend on specific hardware ar-
chitectures. It can work well on different CPU architectures
(e.g., Intel, AMD) and different GPU architectures (e.g.,
NVIDIA Ampere, NVIDIA Turing) as long as the archi-
tectures are supported by PyTorch. Some architecture (e.g.
unified memory) could be more friendly to our approach.
To tune the system for different architectures, we need to fit
a cost model and run policy search to generate offloading
policies, which can be different according to the compute
capabilities, memory capacities, and memory bandwidth
of different architectures. The final absolute performance
will vary, but FlexGen can be easily adapted to different
architectures. We did additional experiments on a differ-
ent hardware setup of 24GB RTX 3090 with 125GB CPU
Memory and 1TB SSD, in addition to our previous setting
of 16GB T4 with 208GB CPU Memory and 1.5TB SSD,
shown in Table 12. The input sequence length is set to 512
and the output sequence length is set to 32. We can see the
results follow similar trends to the setup in the main paper.
FlexGen outperforms other baselines significantly. Compar-

Table 8. Execution time breakdown (seconds) for OPT-175B. The
prompt length is 512. (R) denotes read and (W) denotes write.

Stage Total Compute Weight (R) Cache (R) Cache (W)

Prefill 2711 2220 768 0 261
Decoding 11315 1498 3047 7046 124

ing this 3090 setting with the T4 setting in the main paper,
the performance under the 3090 setting is worse than the
T4 setting for 30B and 175B. This is because CPU memory
also plays a critical role when offloading is needed, making
our T4 setting with larger CPU memory better.

Table 14 and Table 13 show the results for an additional
prompt length 256. As all of our benchmarks in the main pa-
per are done with output sequence length 32, so we add two
additional fixed sequence lengths in Table 17 and Table 18.
The numbers are generally higher in the former one because
the input sequence length is smaller and the output sequence
length is larger. As the throughput is defined as (number
of generated tokens) / (prefill time + generation time), such
a setting makes the fraction of prefill time smaller. The
numbers are generally lower in the latter one because the
output sequence length is smaller.

In summary, FlexGen outperforms baselines in all newly
added settings. The Compression techniques used in
FlexGen are helpful only for large models that need offload-
ing. CPU memory capacity is essential for large models that
need offloading.

Batches with Various Sequence Length We also add exper-
iments of one realistic use case with a mixture of prompt and
output lengths (HELM benchmark) in Table 25. To batch
sequences of variable lengths, FlexGen simply pads all in-
puts to the maximum prompt length, which is a common
method used in many systems. Depending on the distri-
bution of the prompt length, the efficiency of this simple
padding method varies. For example, if most sequences
have similar lengths, then the baching efficiency should be
very high. if some sequences are very long and some se-
quences are short, then FlexGen will spend a lot of time
on the useless computation of padding tokens. We use two
metrics: padded throughput = (number of tokens in padded
prompts + number of tokens in padded outputs) / latency
and actual throughput = (number of non-padding tokens
in prompts + number of non-padding tokens in outputs) /
latency. To better handle prompts with various lengths, one
can utilize some complementary techniques from Orca(Yu
et al., 2022).
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Ablation Study

The numbers are generation throughput on 1 GPU with prompt length 512. The
gray tuple denotes a policy (GPU batch size × #GPU-batch, wg, wc).
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Table 4. Ablation study of proposed techniques. The numbers are
generation throughput on 1 GPU with prompt length 512. The
gray tuple denotes a policy (GPU batch size × #GPU-batch, wg,
wc). More see Appendix A.4.

Model size 30B 175B

All optimizations 7.32 (48×3, 20, 80) 0.69 (32×8, 0, 50)
No policy search 7.26 (48×3, 0, 100) 0.27 (32×1, 0, 50)
No overlapping 5.86 0.59
No CPU compute 4.03 0.62
No disk 7.32 OOM
w/ DeepSpeed policy 1.57 0.01

Table 5. The accuracy (higher is better) and perplexity (lower is
better) with approximate methods.

Dataset Lambada (acc) WikiText (ppl)

Config FP16 4-bit 4-bit-S FP16 4-bit 4-bit-S

OPT-30B 0.725 0.724 0.718 12.72 12.90 12.90
OPT-175B 0.758 0.756 0.756 10.82 10.94 10.94

port the policy used in DeepSpeed/Accelerate into FlexGen
runtime, showing the suboptimality of their policy. A more
detailed ablation study can be found in Appendix A.4.

HELM and Data wrangling. We tested the interaction
of FlexGen and HELM (Liang et al., 2022) by evaluating
a new model OPT-IML-30B (Iyer et al., 2022), which has
not been included in the official release of HELM. FlexGen
finishes the benchmark of 7 representative sub-scenarios in
21 hours , with all system overhead included, under the hard-
ware setup described in Table 1. Table 9 in Appendix A.4
shows the details of the tasks and the corresponding run-
ning time. We also use FlexGen to run the data wrangling
tasks (Narayan et al., 2022) with OPT models. The detailed
task configurations and running time are in Appendix A.4.

6.2. Approximations

We use two tasks to show that our approximation methods
exhibit negligible accuracy loss: next-word prediction on
Lambada (Paperno et al., 2016) and language modeling on
WikiText (Merity et al., 2016). As shown in Table 5, “4-
bit” means using group-wise quantization to compress both
weights and KV cache into 4-bit integers. “4-bit-S” means
combining the quantization and sparse attention with a 10%
sparsity on the value cache. Both methods show negligible
accuracy loss compared to FP16. The results reveal the
robustness of LLMs against these approximations. We also
tried 3-bit compression but it cannot preserve accuracy.

6.3. Offloading vs. Collaborative Inference

We compare FlexGen and Petals under different network
conditions by setting a private Petals cluster on GCP with 4
nodes having one T4 GPU per node. We use Linux traffic
control to constrain the connections between instances to
simulate a realistic decentralized network and benchmark
the performance of an OPT-30B model (input sequence
length: 512, output sequence length: 32). We tune the batch

size of each request to be 2 and issue requests by 6 paral-
lel client processes to achieve the maximum throughput2.
In addition, we normalize the throughput of Petals by the
number of used GPUs. As shown in Fig. 4, we find that
the throughput of FlexGen with a single T4 outperforms the
per-GPU throughput of the Petals cluster under all tested
network conditions. Petals does not utilize offloading, so it
cannot use a very large batch size, which limits its scaling
on throughput. Thus, we believe offloading could be a more
efficient solution for throughput than communicating a large
volume of activations in a long decentralized pipeline; on
the other hand, collaborative inference can be a more viable
option in more latency-sensitive scenarios.

Interestingly, we find that FlexGen can achieve lower latency
than Petals in slow networks with short generation. We
speculate this is because the network bandwidth becomes
the bottleneck for activation transfer, and a large delay incurs
a significant overhead on each communication step in the
pipeline. For the curve of a 100ms delay network, we can
observe a cross point between FlexGen and Petals. This
is because the activations during prefill are larger than the
activations during decoding by a factor of the input sequence
length. Thus, the communication overhead is proportionally
larger, which significantly slows down Petals during prefill.
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Figure 4. Full latency and per-GPU throughput of FlexGen and
Petals in different network delay and bandwidth.

7. Conclusion
We introduce FlexGen, a high-throughput generation engine
for LLM inference, which focuses on latency-insensitive
batch-processing tasks for resource-constrained scenarios.
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Approximations

4-bit means using group-wise quantization to compress both weights and KV
cache into 4-bit integers. 4-bit-S means combining the quantization and sparse
attention with a 10% sparsity on the value cache. Both methods show negligible
accuracy loss compared to FP16.
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Table 4. Ablation study of proposed techniques. The numbers are
generation throughput on 1 GPU with prompt length 512. The
gray tuple denotes a policy (GPU batch size × #GPU-batch, wg,
wc). More see Appendix A.4.

Model size 30B 175B

All optimizations 7.32 (48×3, 20, 80) 0.69 (32×8, 0, 50)
No policy search 7.26 (48×3, 0, 100) 0.27 (32×1, 0, 50)
No overlapping 5.86 0.59
No CPU compute 4.03 0.62
No disk 7.32 OOM
w/ DeepSpeed policy 1.57 0.01

Table 5. The accuracy (higher is better) and perplexity (lower is
better) with approximate methods.

Dataset Lambada (acc) WikiText (ppl)

Config FP16 4-bit 4-bit-S FP16 4-bit 4-bit-S

OPT-30B 0.725 0.724 0.718 12.72 12.90 12.90
OPT-175B 0.758 0.756 0.756 10.82 10.94 10.94

port the policy used in DeepSpeed/Accelerate into FlexGen
runtime, showing the suboptimality of their policy. A more
detailed ablation study can be found in Appendix A.4.

HELM and Data wrangling. We tested the interaction
of FlexGen and HELM (Liang et al., 2022) by evaluating
a new model OPT-IML-30B (Iyer et al., 2022), which has
not been included in the official release of HELM. FlexGen
finishes the benchmark of 7 representative sub-scenarios in
21 hours , with all system overhead included, under the hard-
ware setup described in Table 1. Table 9 in Appendix A.4
shows the details of the tasks and the corresponding run-
ning time. We also use FlexGen to run the data wrangling
tasks (Narayan et al., 2022) with OPT models. The detailed
task configurations and running time are in Appendix A.4.

6.2. Approximations

We use two tasks to show that our approximation methods
exhibit negligible accuracy loss: next-word prediction on
Lambada (Paperno et al., 2016) and language modeling on
WikiText (Merity et al., 2016). As shown in Table 5, “4-
bit” means using group-wise quantization to compress both
weights and KV cache into 4-bit integers. “4-bit-S” means
combining the quantization and sparse attention with a 10%
sparsity on the value cache. Both methods show negligible
accuracy loss compared to FP16. The results reveal the
robustness of LLMs against these approximations. We also
tried 3-bit compression but it cannot preserve accuracy.

6.3. Offloading vs. Collaborative Inference

We compare FlexGen and Petals under different network
conditions by setting a private Petals cluster on GCP with 4
nodes having one T4 GPU per node. We use Linux traffic
control to constrain the connections between instances to
simulate a realistic decentralized network and benchmark
the performance of an OPT-30B model (input sequence
length: 512, output sequence length: 32). We tune the batch

size of each request to be 2 and issue requests by 6 paral-
lel client processes to achieve the maximum throughput2.
In addition, we normalize the throughput of Petals by the
number of used GPUs. As shown in Fig. 4, we find that
the throughput of FlexGen with a single T4 outperforms the
per-GPU throughput of the Petals cluster under all tested
network conditions. Petals does not utilize offloading, so it
cannot use a very large batch size, which limits its scaling
on throughput. Thus, we believe offloading could be a more
efficient solution for throughput than communicating a large
volume of activations in a long decentralized pipeline; on
the other hand, collaborative inference can be a more viable
option in more latency-sensitive scenarios.

Interestingly, we find that FlexGen can achieve lower latency
than Petals in slow networks with short generation. We
speculate this is because the network bandwidth becomes
the bottleneck for activation transfer, and a large delay incurs
a significant overhead on each communication step in the
pipeline. For the curve of a 100ms delay network, we can
observe a cross point between FlexGen and Petals. This
is because the activations during prefill are larger than the
activations during decoding by a factor of the input sequence
length. Thus, the communication overhead is proportionally
larger, which significantly slows down Petals during prefill.
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Figure 4. Full latency and per-GPU throughput of FlexGen and
Petals in different network delay and bandwidth.

7. Conclusion
We introduce FlexGen, a high-throughput generation engine
for LLM inference, which focuses on latency-insensitive
batch-processing tasks for resource-constrained scenarios.
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Offloading vs. Collaborative Inference

The throughput of FlexGen with a single T4 outperforms the per-GPU
throughput of the Petals cluster (4 nodes on GCP with one T4 GPU per node)
under all tested network conditions.
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Table 4. Ablation study of proposed techniques. The numbers are
generation throughput on 1 GPU with prompt length 512. The
gray tuple denotes a policy (GPU batch size × #GPU-batch, wg,
wc). More see Appendix A.4.
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Table 5. The accuracy (higher is better) and perplexity (lower is
better) with approximate methods.
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OPT-30B 0.725 0.724 0.718 12.72 12.90 12.90
OPT-175B 0.758 0.756 0.756 10.82 10.94 10.94

port the policy used in DeepSpeed/Accelerate into FlexGen
runtime, showing the suboptimality of their policy. A more
detailed ablation study can be found in Appendix A.4.

HELM and Data wrangling. We tested the interaction
of FlexGen and HELM (Liang et al., 2022) by evaluating
a new model OPT-IML-30B (Iyer et al., 2022), which has
not been included in the official release of HELM. FlexGen
finishes the benchmark of 7 representative sub-scenarios in
21 hours , with all system overhead included, under the hard-
ware setup described in Table 1. Table 9 in Appendix A.4
shows the details of the tasks and the corresponding run-
ning time. We also use FlexGen to run the data wrangling
tasks (Narayan et al., 2022) with OPT models. The detailed
task configurations and running time are in Appendix A.4.

6.2. Approximations

We use two tasks to show that our approximation methods
exhibit negligible accuracy loss: next-word prediction on
Lambada (Paperno et al., 2016) and language modeling on
WikiText (Merity et al., 2016). As shown in Table 5, “4-
bit” means using group-wise quantization to compress both
weights and KV cache into 4-bit integers. “4-bit-S” means
combining the quantization and sparse attention with a 10%
sparsity on the value cache. Both methods show negligible
accuracy loss compared to FP16. The results reveal the
robustness of LLMs against these approximations. We also
tried 3-bit compression but it cannot preserve accuracy.

6.3. Offloading vs. Collaborative Inference

We compare FlexGen and Petals under different network
conditions by setting a private Petals cluster on GCP with 4
nodes having one T4 GPU per node. We use Linux traffic
control to constrain the connections between instances to
simulate a realistic decentralized network and benchmark
the performance of an OPT-30B model (input sequence
length: 512, output sequence length: 32). We tune the batch

size of each request to be 2 and issue requests by 6 paral-
lel client processes to achieve the maximum throughput2.
In addition, we normalize the throughput of Petals by the
number of used GPUs. As shown in Fig. 4, we find that
the throughput of FlexGen with a single T4 outperforms the
per-GPU throughput of the Petals cluster under all tested
network conditions. Petals does not utilize offloading, so it
cannot use a very large batch size, which limits its scaling
on throughput. Thus, we believe offloading could be a more
efficient solution for throughput than communicating a large
volume of activations in a long decentralized pipeline; on
the other hand, collaborative inference can be a more viable
option in more latency-sensitive scenarios.

Interestingly, we find that FlexGen can achieve lower latency
than Petals in slow networks with short generation. We
speculate this is because the network bandwidth becomes
the bottleneck for activation transfer, and a large delay incurs
a significant overhead on each communication step in the
pipeline. For the curve of a 100ms delay network, we can
observe a cross point between FlexGen and Petals. This
is because the activations during prefill are larger than the
activations during decoding by a factor of the input sequence
length. Thus, the communication overhead is proportionally
larger, which significantly slows down Petals during prefill.
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Figure 4. Full latency and per-GPU throughput of FlexGen and
Petals in different network delay and bandwidth.

7. Conclusion
We introduce FlexGen, a high-throughput generation engine
for LLM inference, which focuses on latency-insensitive
batch-processing tasks for resource-constrained scenarios.
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Summary



Strength

▶ A new and important problem.

▶ In-depth analysis of the problem and locating the bottleneck with
experiments.

▶ A lot of experiments (6 pages in the appendix).



Limitation

▶ The approximate methods are not novel and are not strongly related to
other designs.

▶ The linear cost model does not reflect the fact that larger batch sizes bring
better GPU utilization.

▶ The strategy space is not very complete and many of the decisions (e.g.,
CPU delegation) are manual.



Takeaways

▶ New scenarios (throughput-oriented LLM inference) brings new challenges to
well-studied problems (offloading).

▶ It is easier to run experiments for resource-constraint systems.

▶ Search for parameters of well-designed heurstics instead of every possible
solutions.
- It better illustrates the benefits instead of being pure “black-box”
- It may help maintain good performance with inaccurate profile data and

imperfect cost models.



Thank you!


