FlexGen: High-Throughput Generative Inference of
Large Language Models with a Single GPU

Ying Sheng! Lianmin Zheng® Binhang Yuan® Zhuohan Li> Max Ryabinin*?
Daniel Y. Ful Zhigiang Xie! Beidi Chen®” Clark Barrett!
Joseph E. Gonzalez? Percy Liang! Christopher Reé! lon Stoica? Ce Zhang?

IStanford University 2UC Berkeley 3ETH Zurich
4Yandex ®HSE University
6Meta "Carnegie Mellon University

Presenter: Shiwei Zhang

Content

Introduction
Background: LLM Inference

Offloading Strategy

>

>

>

» Approximate Methods
» Evaluation

>

Conclusion

Introduction

Large Language Models

Most of the state-of-the-art large language
models use the decoder-only Transformer
architecture.

They take a sequence of tokens as input and
produce the probability distribution of the
next token.

Output
Probabilities

Linear

Add & Norm

J

((Add & Norm J«~

Multi-Head

Add & Norm
Feed Attention
Forward Nx
Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A)
\ —)
Positional Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Interactive vs. Throughput-oriented Inference

_ o “Back-of-house” tasks are less sensitive
Interactive applications
to latency.

» . .
Chat Bot » Information Extraction

» Customer Support

» Data Wrangling
» Search

» Form Processing

It is possible to trade off latency for higher throughput in some workloads,
providing opportunities to reduce resource requirements.

Latency-Throughput Trade-off

Generation throughput (token/s)

-#%- FlexGen (c) —*— FlexGen —x— DeepSpeed —*— Accelerate

20
-2
-4
-6

2—8

OPT-175B OPT-30B
—% 3 — = 4
/,*”" 2 o

¥
* 2!
1
1
* >-1

* I -3

211 213
Latency (s)

28 29 210
Latency (s)

Current State

» FasterTransformer, Orca, LightSeq, PaLM, TurboTransformers, DeepSpeed
Inference, and Hugging Face Accelerate focus on latency-oriented
scenarios with high-end accelerators.

» DeepSpeed Inference and Hugging Face Accelerate supports offloading that
is inherited from training systems. They fail to exploit the structure of the
throughput-oriented LLM inference computation.

» Petals enable LLM inference on accessible hardware by collaborative
computing.

FlexGen

The focus of this paper is designing GPU

efficient offloading strategies for
high-throughput generative inference, on
a single commodity GPU. Disk

CPU

Contributions

» A strategy space considering computation schedule, tensor placement, and
computation delegation.

» Compression of both the weights and KV cache without retraining or
calibration.

» Experiments of OPT-175B on NVIDIA T4 (16GB) showing 100x/40x higher
throughput with/without compression.

Background: LLM Inference

Generative Inference

A typical LLM generative inference task consists of two stages, the prefill stage
and the decoding stage.

During the prefill phase, the cached key and value vectors for each transformer
layer is calculated.

TR S A S P i i
i 4T
XOXf
Vh

_ i i
= relu(xp,; - W1) - Wa + X

Xi+1

Generative Inference (Cont'd)

During the decoding phase, given t' as the embedding of the current generated
token in the i-th layer:

Xy + Concat(xy),t" - wi; xj < Concat(xy), t' - wy; to =t"-wg

t’QXZ}(T

Vh

= relu(tiout “W1) - Wo + tiout

) xt o wh 4+t

Dt = Softmax(

ti+1

Memory Analysis

Denote the batch size by b, the input sequence length by s, the output sequence
length by n, the hidden dimensions of the Transformer and MLP layers by h; and
hs, and the number of layers by [.

The model weights is roughly (ignoring the embedding layer) [(8h3 + 4hyhy)
bytes and the peak KV cache is 4blh: (s + n).

The OPT-175B (I = 96, h; = 12288, hy = 49152) model takes 325 GB. With
b=>512, s =512, and n = 32, the KV cache is 1.2 TB, which is 3.8 x the model

weights.

Offloading Strategy

Problem Formulation

The generative inference with offloading is formulated as a graph traversal
problem. In the figure, a square means the computation of a GPU batch for a
layer. The squares with the same color share the same layer weights.

Token 0 Token 1 Token 2

Dataset [(HHHHHHHHHHH]
e (HHHHHHHHH]

Problem Formulation (Cont'd)

A valid path is a path that traverses all squares under the following constraints:

>

>

A square can only be computed if all squares to its left on the same row
were computed.

To compute a square on a device, all its inputs must be loaded to the same
device.

After being computed, a square produces two outputs: activations and KV
cache. The activations should be stored until its right sibling is computed.

The KV cache should be stored until the rightmost square on the same row
is computed.

At any time, the total size of tensors stored on a device cannot exceed its
memory capacity.

Objective

The goal is to find a valid path that minimizes the total execution time, which
includes the compute cost and 1/O cost when moving tensors between devices.

Compute Schedule

All existing systems traverse the graph row-by-row to reduce latency.

Token 0 N Token 1 " Token 2

layer 3
e e ety
E =ty
Dataset T 11
(infinite) T Y
AN I I | [T JJ_J-&H:FE]
L (HHHHHH]
Toatch]| 11) ﬂ'_m_'_m_'_n
oo e LLALAIALALH LA LALALHL
(infinite)) “I“Ig.g-g.

oy He Heq He Moy d
it

A
i

(b) Zig-zag block schedule

The zig-zag block schedule reduces 1/0 costs by reusing the weights and KV
cache for multiple batches. It introduces two parameters into the search space:
the GPU batch size and the number of GPU batches in a block.

Compute Schedule with Overlapping

Another typical optimization is
overlapping the weights load of the
next layer, cache/activation load of
the next batch, cache/activation
store of the previous batch, and the
computation of the current batch.

Algorithm 1 Block Schedule with Overlapping

for i = 1 to generation_length do
for j = 1 to num_layers do

// Compute a block with multiple GPU batches

for k = 1 to num_GPU _batches do
/I Load the weight of the next layer
load.weight(i,j+ 1,k)
/I Store the cache and activation of the prev batch
store._activation(i,j,k— 1)
store_cache(i,j, k — 1)
/I Load the cache and activation of the next batch
load_cache(i,j,k + 1)
load-activation(i,j,k+ 1)
/I Compute this batch
compute(s, j, k)
/I Synchronize all devices
synchronize()

end for

end for
end for

Tensor Placement

FlexGen uses variables wg, we, and wd to define the percentages of weights
stored on GPU, CPU, and disk, hg, hc, and hd to define the percentages of
activations, and cg, cc, cd for the KV cache.

FlexGen uses layer granularity (e.g., assign 50% of the tensors in a layer to the
GPU) for weights, and tensor granularity (e.g., assign 50% of the elements in a
tensor to the GPU) for activations and the KV cache.

Computation Delegation

Using CPU for computation can be beneficial when the computation is

i i T
|/O-bounded. Take the computation of attention scores Softmax(th:) as
example: the size of the moved KV cache is b X s x h; x 4 bytes, and the size of
the moved activation is b x hy x 4. For long sequences (e.g., s > 512), it is
better to compute the attention scores on the CPU if the associated KV cache is
not stored on the GPU.

Cost Model

The total latency for computing a block can be estimated as
T=Tye l+Tgen-(n—1)-1

where T, and Ti., are the estimated latencies of the prefill stage and the
decoding stage for one layer.

Cost Model (Cont'd)

Assuming perfect overlapping, Ty can be esitmated as
Tore = max(ctog?, gtoc®, dtoc?, ctod?, compP)

where ctog?, gtoc?, dtocP, ctod?, and comp” denote the latency of read from
CPU to GPU, write from GPU to CPU, read from disk to CPU, write from CPU
to disk, and computation, respectively, during prefill for one layer.

Similarly, Tgen can be esitmated as

Tyen = max(ctog?, gtoc?, dtoc?, ctod?, comp?)

Cost Model Example

1/O terms like dtoc? are estimated by summing up the |/O events, which contain
weights, activations, and cache reads.

The size of FP16 weights for one Transformer layer is 8h? + 4h; - ho bytes. Let
bls denote the block size and s be the prompt length. The size of the activation

for one layer is 2 - bls - hy and the size of KV cache for one layer on average is
4-bls-(s+ %) hi.

Since wd, hd, and cd percent of weights, activations, and KV cache are load
from disk, the total latency of disk read is

dtoc? =

1) N

Policy Search

A policy includes 11 variables: block size bls, GPU batch size gbs, and 9
percentages for tensor placement.

FlexGen first enumerate a few choices of (bls, gbs) tuple. With fixed bls, gbs,
the best placement becomes a linear programming problem.

min T/bls
P

s.t. gpu peak memory
cpu peak memory

disk peak memory

wg + we + wd 1

cg + cc+ cd 1
hg+hc+hd = 1

gpu mem capacity
cpu mem, capacity
disk mem capacity

A AN A

Extension to Multiple GPUs

Tensor parallelism can reduce the single-query latency but pipeline parallelism can
achieve good scaling on throughput due to its low communication costs.

FlexGen implements pipeline parallelism by equally partitioning an [-layer LLM on
m GPUs.

Approximate Methods

Group-wise Quantization

FlexGen direclty quantize both the weights and KV cache into 4-bit integers
without any retraining or calibration.

Given a tensor, FlexGen choose ¢ continous elements along a certain dimension
as a group. For each group, the min and max are calculated and each element x
is quantized as

T — min

Tquant = round(x (2" —1))

max — min

Group-wise Quantization (Cont'd)

FlexGen uses 4 bits quantization with a group size of 64. The weights are
grouped along the output channel dimension and the KV cache are grouped
along the hidden dimension.

Fine-grained group-wise quantization in FlexGen causes some overhead in
compression and decompression. Such an overhead could be very significant if
run on a CPU which makes the CPU delegation useless, so FlexGen turns off the
CPU delegation when enabling quantization.

Sparse Attention

After computing the attention matrices, for each query, FlexGen calculates the
indices of the Top-K tokens from the K cache, then simply drops other tokens
and only loads the subset of the V cache according to the indices.

Experiments

Experimental Setup

Hardware: Device Model Memory
GPU NVIDIA T4 16 GB
CPU Intel Xeon @ 2.00GHz 208 GB

Disk Cloud default SSD (NVMe) 1.5TB

Models: OPT models with 6.7B to 175B parameters.

Workloads: Synthetic datasets with all prompts padded to the 512/1024 tokens.
The system is required to generate 32 tokens for each prompt.

Implementation: FlexGen is implemented on top of PyTorch. FlexGen manages
multiple CUDA streams and CPU threads to overlap /O with compute. FlexGen
creates files for tensors stored on the disk and maps them as virtual memory to
access them.

Baselines

DeepSpeed Zero-Inference supports offloading the whole weights to CPU or
disk. It uses ZeRO data parallelism when given multiple GPUs.

Hugging Face Accelerate supports offloading a fraction of the weights.

Petals lowers the resource requirements for LLM inference with decentralized
collaborative inference.

Maximum Throughput Benchmark

For OPT-175B, baseline systems can only use a GPU batch size of 2, but
FlexGen can use a GPU batch size of 32 and a block size of 32 x 8, achieving a
69x higher throughput

Seq. length 512 1024
Model size 6.7B 30B 175B 6.7B 30B 175B

Accelerate 25.12 062 0.01 13.01 0.31 0.01
DeepSpeed 928 0.60 0.01 459 029 OOM
Petals 825 284 0.08 6.56 1.51 0.06
FlexGen 2526 732 0.69 13.72 350 0.35

FlexGen (¢) 29.12 8.70 .12 13.18 3.98 0.42

Maximum Throughput Benchmark with Multiple GPUs

FlexGen achieves super-linear scaling on decoding throughput with pipeline

parallelism.
Metric Generation Throughput Decoding Throughput
Model size 6.7B 30B 175B 6.7B 30B 175B
FlexGen (1) 2526 732 0.69 3828 11.52 0.83

FlexGen (4) 201.12 23.61 233 764.65 4894 3.86
DeepSpeed (4) 50.00 6.40 0.05 50.20 6.40 0.05

Latency-Throughput Trade-off

Generation throughput (token/s)

-%- FlexGen (c) —*— FlexGen —*— DeepSpeed —— Accelerate

20

OPT-1758B OPT-30B
A=K 23 R
_*
¥
* 2!
1
1
* 51
* I 2_3

211

213

Latency (s)

28 29 210
Latency (s)

Runtime Breakdown

Stage Total Compute Weight (R) Cache (R) Cache (W)

Prefill 2711 2220 768 0 261
Decoding 11315 1498 3047 7046 124

Ablation Study

The numbers are generation throughput on 1 GPU with prompt length 512. The
gray tuple denotes a policy (GPU batch size x #GPU-batch, wg, wc).

Model size | 30B 175B

All optimizations 7.32 (48x3,20,80) 0.69 (32x38, 0, 50)
No policy search 7.26 (48x3,0,100) 0.27 (32x 1,0, 50)
No overlapping 5.86 0.59

No CPU compute 4.03 0.62

No disk 7.32 OOM

w/ DeepSpeed policy | 1.57 0.01

Approximations

4-bit means using group-wise quantization to compress both weights and KV
cache into 4-bit integers. 4-bit-S means combining the quantization and sparse
attention with a 10% sparsity on the value cache. Both methods show negligible

accuracy loss compared to FP16.

Dataset Lambada (acc) WikiText (ppl)

Config FP16 4-bit 4-bit-S FP16 4-bit 4-bit-S

OPT-30B 0.725 0.724 0.718 1272 1290 12.90
OPT-175B 0.758 0.756 0.756 10.82 1094 10.94

Offloading vs. Collaborative Inference

The throughput of FlexGen with a single T4 outperforms the per-GPU
throughput of the Petals cluster (4 nodes on GCP with one T4 GPU per node)
under all tested network conditions.

—+— FlexGen 1xT4 —+— Petals 4xT4 10ms 0.1Gbps
Petals 4xT4 10ms 1Gbps —— Petals 4xT4 100ms 0.1Gbps

160 —
Q27
B0]
> X6
2120 S
9 5
© 100 2
S 80 oe
2 o
i< o3
g 60 5
5 g
o 40 o
= 31
S 20 o
It 274
o Fo

5 10 15 20 25 30 5 10 15 20 25 30
Output sequence length Output sequence length

o

Summary

Strength

» A new and important problem.

» In-depth analysis of the problem and locating the bottleneck with
experiments.

» A lot of experiments (6 pages in the appendix).

Limitation

» The approximate methods are not novel and are not strongly related to
other designs.

» The linear cost model does not reflect the fact that larger batch sizes bring
better GPU utilization.

» The strategy space is not very complete and many of the decisions (e.g.,
CPU delegation) are manual.

Takeaways

» New scenarios (throughput-oriented LLM inference) brings new challenges to
well-studied problems (offloading).

» It is easier to run experiments for resource-constraint systems.

» Search for parameters of well-designed heurstics instead of every possible

solutions.
- It better illustrates the benefits instead of being pure “black-box”
- It may help maintain good performance with inaccurate profile data and

imperfect cost models.

Thank you!

