
Retrieval-Augmented Generation for

Knowledge-Intensive NLP Tasks

Patrick Lewis1,2 Ethan Perez3 Aleksandra Piktus1 Fabio Petroni1

Vladimir Karpukhin1 Naman Goyal1 Heinrich Küttler1 Mike Lewis1

Wen-tau Yih1 Tim Rocktäschel1,2 Sebastian Riedel1,2 Douwe Kiela1

1Facebook AI Research
2University College London

3New York University

Presenter: Shiwei Zhang

Figure 5: Technology tree of representative RAG research with different augmentation aspects

it typically relies on a sequence of n tokens to demarcate the
boundaries between generated text and retrieved documents.

To address specific data scenarios, recursive retrieval and
multi-hop retrieval techniques are utilized. Recursive re-
trieval involves a structured index to process and retrieve
data in a hierarchical manner, which may include summa-
rizing sections of a document or lengthy PDF before per-
forming a retrieval based on this summary. Subsequently, a
secondary retrieval within the document refines the search,
embodying the recursive nature of the process. In contrast,
multi-hop retrieval is designed to delve deeper into graph-
structured data sources, extracting interconnected informa-
tion [Li et al., 2023c].

Additionally, some methodologies integrate the steps of re-
trieval and generation. ITER-RETGEN [Shao et al., 2023]
employs a synergistic approach that leverages “retrieval-
enhanced generation” alongside “generation-enhanced re-
trieval” for tasks that necessitate the reproduction of specific
information. The model harnesses the content required to ad-
dress the input task as a contextual basis for retrieving per-
tinent knowledge, which in turn facilitates the generation of
improved responses in subsequent iterations.

Recursive Retrieval
Recursive Retrieval is often used in information retrieval and
NLP to improve the depth and relevance of search results.

The process involves iteratively refining search queries based
on the results obtained from previous searches. Recursive
Retrieval aims to enhance the search experience by gradu-
ally converging on the most pertinent information through a
feedback loop. IRCoT [Trivedi et al., 2022] uses chain-of-
thought to guide the retrieval process and refines the CoT
with the obtained retrieval results. ToC [Kim et al., 2023]
creates a clarification tree that systematically optimizes the
ambiguous parts in the Query. It can be particularly useful in
complex search scenarios where the user’s needs are not en-
tirely clear from the outset or where the information sought
is highly specialized or nuanced. The recursive nature of the
process allows for continuous learning and adaptation to the
user’s requirements, often resulting in improved satisfaction
with the search outcomes.

Adaptive Retrieval
Adaptive retrieval methods, exemplified by Flare and Self-
RAG [Jiang et al., 2023b, Asai et al., 2023], refine the RAG
framework by enabling LLMs to actively determine the op-
timal moments and content for retrieval, thus enhancing the
efficiency and relevance of the information sourced.

These methods are part of a broader trend wherein
LLMs employ active judgment in their operations, as
seen in model agents like AutoGPT, Toolformer, and
Graph-Toolformer [Yang et al., 2023c, Schick et al., 2023,

Content Introduction Models Training and Inference Experiments Conclusion

Content

▶ Introduction

▶ Models

▶ Training and Inference

▶ Experiments

▶ Conclusion

Content Introduction Models Training and Inference Experiments Conclusion

Introduction

Content Introduction Models Training and Inference Experiments Conclusion

Motivation

Pre-trained neural language models generate content based on parameterized
implicit knowledge base. Such models have several downsides:

▶ They cannot easily expand or revise their memory.

▶ They cannot straightforwardly provide insights into the predictions.

▶ They may produce “hallucinations”.

Hybrid models that combine parametric memory with non-parametric (i.e.
retrieval-based) memories may address these issues.

Content Introduction Models Training and Inference Experiments Conclusion

Overview

Retriever pη(z|x) returns (top-K) probabilities over documents for query x.

Generator pθ(yi|x, z, y1:i−1) generates a current token based on a context of the
previous i− 1 tokens y1:i−1, the original input x, and a retrieved passage z.

The�DiYine
Comed\�(x) T

QXeU\
EQcRdeU

T([)

MIPS pθ

GeneUaWoU¬Sѡ
(PaUaPeWULc)

MaUgin-
ali]e

ThiV�14Wh�cenWXU\�ZoUk
iV�diYided�inWo�3
VecWionV:�"InfeUno",
"PXUgaWoUio"�&
"PaUadiVo"���������(y)

End-to-End Backprop through T and¬pθ

BaUack�Obama�ZaV
boUn�in�HaZaii.(x)

FacW VeUiÀcaWiRQ: FacW QXeU\

VXppoUWV�(y)

QXeVWiRQ GeQeUaWiRQ

FacW VeUiÀcaWiRQ:
LabeO GeQeUaWiRQ

DRcXmeQW
IQde[

Define�"middle�eaU"(x)

QXeVWiRQ AQVZeUiQg:
QXeVWiRQ QXeU\

The�middle�eaU�inclXdeV
Whe�W\mpanic�caYiW\�and
Whe�WhUee�oVVicleV.��(y)

QXeVWiRQ AQVZeUiQg:
AQVZeU GeQeUaWiRQReWUieYeU Sη

(NRQ-PaUaPeWULc)
z4

z3
z2

z1

d(])

JeRSaUd\ QXeVWiRQ
GeQeUaWiRQ:

AQVZeU QXeU\

Figure 1: Overview of our approach. We combine a pre-trained retriever (Query Encoder + Document
Index) with a pre-trained seq2seq model (Generator) and fine-tune end-to-end. For query x, we use
Maximum Inner Product Search (MIPS) to find the top-K documents zi. For final prediction y, we
treat z as a latent variable and marginalize over seq2seq predictions given different documents.

but have only explored open-domain extractive question answering. Here, we bring hybrid parametric
and non-parametric memory to the “workhorse of NLP,” i.e. sequence-to-sequence (seq2seq) models.

We endow pre-trained, parametric-memory generation models with a non-parametric memory through
a general-purpose fine-tuning approach which we refer to as retrieval-augmented generation (RAG).
We build RAG models where the parametric memory is a pre-trained seq2seq transformer, and the
non-parametric memory is a dense vector index of Wikipedia, accessed with a pre-trained neural
retriever. We combine these components in a probabilistic model trained end-to-end (Fig. 1). The
retriever (Dense Passage Retriever [26], henceforth DPR) provides latent documents conditioned on
the input, and the seq2seq model (BART [32]) then conditions on these latent documents together with
the input to generate the output. We marginalize the latent documents with a top-K approximation,
either on a per-output basis (assuming the same document is responsible for all tokens) or a per-token
basis (where different documents are responsible for different tokens). Like T5 [51] or BART, RAG
can be fine-tuned on any seq2seq task, whereby both the generator and retriever are jointly learned.

There has been extensive previous work proposing architectures to enrich systems with non-parametric
memory which are trained from scratch for specific tasks, e.g. memory networks [64, 55], stack-
augmented networks [25] and memory layers [30]. In contrast, we explore a setting where both
parametric and non-parametric memory components are pre-trained and pre-loaded with extensive
knowledge. Crucially, by using pre-trained access mechanisms, the ability to access knowledge is
present without additional training.

Our results highlight the benefits of combining parametric and non-parametric memory with genera-
tion for knowledge-intensive tasks—tasks that humans could not reasonably be expected to perform
without access to an external knowledge source. Our RAG models achieve state-of-the-art results
on open Natural Questions [29], WebQuestions [3] and CuratedTrec [2] and strongly outperform
recent approaches that use specialised pre-training objectives on TriviaQA [24]. Despite these being
extractive tasks, we find that unconstrained generation outperforms previous extractive approaches.
For knowledge-intensive generation, we experiment with MS-MARCO [1] and Jeopardy question
generation, and we find that our models generate responses that are more factual, specific, and
diverse than a BART baseline. For FEVER [56] fact verification, we achieve results within 4.3% of
state-of-the-art pipeline models which use strong retrieval supervision. Finally, we demonstrate that
the non-parametric memory can be replaced to update the models’ knowledge as the world changes.1

2 Methods

We explore RAG models, which use the input sequence x to retrieve text documents z and use them
as additional context when generating the target sequence y. As shown in Figure 1, our models
leverage two components: (i) a retriever p⌘(z|x) with parameters ⌘ that returns (top-K truncated)
distributions over text passages given a query x and (ii) a generator p✓(yi|x, z, y1:i�1) parametrized

1Code to run experiments with RAG has been open-sourced as part of the HuggingFace Transform-
ers Library [66] and can be found at https://github.com/huggingface/transformers/blob/master/
examples/rag/. An interactive demo of RAG models can be found at https://huggingface.co/rag/

2

Content Introduction Models Training and Inference Experiments Conclusion

Models

Content Introduction Models Training and Inference Experiments Conclusion

Marginalization

RAG treats the retrieved document as a latent variable and proposes two models
to marginalize over the latent documents in different ways to produce a
distribution over generated text.

pη(z|x)
pθ(yi|x, z, y1:i−1)

}
?⇒ p(y|x)

Content Introduction Models Training and Inference Experiments Conclusion

RAG-Sequence Model

The RAG-Sequence model uses the same retrieved document to generate the
complete sequence.

pRAG-Sequence(y|x) ≈
∑

z∈top-k(p(·|x))

pη(z|x)pθ(y|x, z)

=
∑

z∈top-k(p(·|x))

pη(z|x)
N∏
i

pθ(yi|x, z, y1:i−1)

Content Introduction Models Training and Inference Experiments Conclusion

RAG-Token Model

The RAG-Token model draws a different latent document for each target token.
This allows the generator to choose content from several documents when
producing an answer.

pRAG-Token(y|x) ≈
N∏
i

∑
z∈top-k(p(·|x))

pη(z|x)pθ(yi|x, zi, y1:i−1)

Content Introduction Models Training and Inference Experiments Conclusion

Retriever: DPR

pη(z|x) ∝ exp(d(z)Tq(x)) d(z) = BERTd(z), q(x) = BERTq(x)

d(z) is a vector representation of a document produced by a BERT model and
q(x) is a vector representation of the query produced by another BERT model.
Calculating top-k(pη(·|x)) is a Maximum Inner Product Search (MIPS) problem,
which can be approximately solved in sub-linear time.

Content Introduction Models Training and Inference Experiments Conclusion

Generator: BART

BART is a seq2seq transformer model with 400M parameters. RAG concatenates
the input x and the retrieved document z to produce the input for BART.

Content Introduction Models Training and Inference Experiments Conclusion

Training and Inference

Content Introduction Models Training and Inference Experiments Conclusion

Training

Given a fine-tuning training corpus of input/output pairs (xj, yj), the retriever
and generator are jointly trained by minimizing the negative marginal
log-likelihood

∑
j − log p(yj|xj).

The document encoder BERTd is not updated during training as it is costly to do
so (the document index needs to be updated as the model changes).

Content Introduction Models Training and Inference Experiments Conclusion

Decoding - RAG-Token

The RAG-Token model can be seen as a standard autoregressive seq2seq
generator with transition probability:

p′θ(yi|x, yi:i−1) =
∑

z∈top-k(p(·|x))

pη(zi|x)pθ(yi|x, zi, y1:i−1)

Standard beam-search decoder can be used to sample the output.

Content Introduction Models Training and Inference Experiments Conclusion

Decoding - RAG-Sequence

For RAG-Sequence, RAG runs beam search for each document z, scoring each
hypothesis using pθ(yi|x, z, y1:i−1) and yielding a set of hypotheses Y . Some of
the hypotheses may not appear in the beams of all documents.

If a hypothesis y does not appear in a beam with document z, there are two
options. The first option is to run an additional forward pass to get
pθ(yi|x, z, y1:i−1). This is refered to as “Thorough Decoding”. The other option
is to assume pθ(y|x, zi) ≈ 0 if y was not generated during beam search for x, zi.
This is refered to as “Fast Decoding”.

Content Introduction Models Training and Inference Experiments Conclusion

Experiments

Content Introduction Models Training and Inference Experiments Conclusion

Setup

▶ Non-parametric knowledge: Dec. 2018 Wikipedia dump split into 100
word chunks, totaling 21M documents.

▶ MIPS solver: FAISS with Hierarchical Navigable Small World
approximation.

▶ Hyper-parameters: k ∈ {5, 10} when retrieving the top-k documents.

Content Introduction Models Training and Inference Experiments Conclusion

Open-domain Question Answering

The four columns corresponds to four datasets.

Table 1: Open-Domain QA Test Scores. For TQA,
left column uses the standard test set for Open-
Domain QA, right column uses the TQA-Wiki
test set. See Appendix D for further details.

Model NQ TQA WQ CT

Closed
Book

T5-11B [52] 34.5 - /50.1 37.4 -
T5-11B+SSM[52] 36.6 - /60.5 44.7 -

Open
Book

REALM [20] 40.4 - / - 40.7 46.8
DPR [26] 41.5 57.9/ - 41.1 50.6

RAG-Token 44.1 55.2/66.1 45.5 50.0
RAG-Seq. 44.5 56.8/68.0 45.2 52.2

Table 2: Generation and classification Test Scores.
MS-MARCO SotA is [4], FEVER-3 is [68] and
FEVER-2 is [57] *Uses gold context/evidence.
Best model without gold access underlined.

Model Jeopardy MSMARCO FVR3 FVR2
B-1 QB-1 R-L B-1 Label Acc.

SotA - - 49.8* 49.9* 76.8 92.2*

BART 15.1 19.7 38.2 41.6 64.0 81.1

RAG-Tok. 17.3 22.2 40.1 41.5 72.5 89.5RAG-Seq. 14.7 21.4 40.8 44.2

to more effective marginalization over documents. Furthermore, RAG can generate correct answers
even when the correct answer is not in any retrieved document, achieving 11.8% accuracy in such
cases for NQ, where an extractive model would score 0%.

4.2 Abstractive Question Answering

As shown in Table 2, RAG-Sequence outperforms BART on Open MS-MARCO NLG by 2.6 Bleu
points and 2.6 Rouge-L points. RAG approaches state-of-the-art model performance, which is
impressive given that (i) those models access gold passages with specific information required to
generate the reference answer, (ii) many questions are unanswerable without the gold passages, and
(iii) not all questions are answerable from Wikipedia alone. Table 3 shows some generated answers
from our models. Qualitatively, we find that RAG models hallucinate less and generate factually
correct text more often than BART. Later, we also show that RAG generations are more diverse than
BART generations (see §4.5).

4.3 Jeopardy Question Generation

Table 2 shows that RAG-Token performs better than RAG-Sequence on Jeopardy question generation,
with both models outperforming BART on Q-BLEU-1. Table 4 shows human evaluation results, over
452 pairs of generations from BART and RAG-Token. Evaluators indicated that BART was more
factual than RAG in only 7.1% of cases, while RAG was more factual in 42.7% of cases, and both
RAG and BART were factual in a further 17% of cases, clearly demonstrating the effectiveness of
RAG on the task over a state-of-the-art generation model. Evaluators also find RAG generations to
be more specific by a large margin. Table 3 shows typical generations from each model.

Jeopardy questions often contain two separate pieces of information, and RAG-Token may perform
best because it can generate responses that combine content from several documents. Figure 2 shows
an example. When generating “Sun”, the posterior is high for document 2 which mentions “The
Sun Also Rises”. Similarly, document 1 dominates the posterior when “A Farewell to Arms” is
generated. Intriguingly, after the first token of each book is generated, the document posterior flattens.
This observation suggests that the generator can complete the titles without depending on specific
documents. In other words, the model’s parametric knowledge is sufficient to complete the titles. We
find evidence for this hypothesis by feeding the BART-only baseline with the partial decoding "The
Sun. BART completes the generation "The Sun Also Rises" is a novel by this author of "The Sun
Also Rises" indicating the title "The Sun Also Rises" is stored in BART’s parameters. Similarly,
BART will complete the partial decoding "The Sun Also Rises" is a novel by this author of "A
with "The Sun Also Rises" is a novel by this author of "A Farewell to Arms". This example shows
how parametric and non-parametric memories work together—the non-parametric component helps
to guide the generation, drawing out specific knowledge stored in the parametric memory.

4.4 Fact Verification

Table 2 shows our results on FEVER. For 3-way classification, RAG scores are within 4.3% of
state-of-the-art models, which are complex pipeline systems with domain-specific architectures and
substantial engineering, trained using intermediate retrieval supervision, which RAG does not require.

6

RAG can generate correct answers even if it is not in any retrieved document,
where extractive models would score 0%.

Content Introduction Models Training and Inference Experiments Conclusion

Abstractive Question Answering

This task consists of questions, ten gold passages retrieved from a search engine
for each question, and a full sentence answer annotated from the retrieved
passages.

RAG does not use the gold passages and relies only on its parametric and
non-parametric (Wikipedia) knowledges.

Table 1: Open-Domain QA Test Scores. For TQA,
left column uses the standard test set for Open-
Domain QA, right column uses the TQA-Wiki
test set. See Appendix D for further details.

Model NQ TQA WQ CT

Closed
Book

T5-11B [52] 34.5 - /50.1 37.4 -
T5-11B+SSM[52] 36.6 - /60.5 44.7 -

Open
Book

REALM [20] 40.4 - / - 40.7 46.8
DPR [26] 41.5 57.9/ - 41.1 50.6

RAG-Token 44.1 55.2/66.1 45.5 50.0
RAG-Seq. 44.5 56.8/68.0 45.2 52.2

Table 2: Generation and classification Test Scores.
MS-MARCO SotA is [4], FEVER-3 is [68] and
FEVER-2 is [57] *Uses gold context/evidence.
Best model without gold access underlined.

Model Jeopardy MSMARCO FVR3 FVR2
B-1 QB-1 R-L B-1 Label Acc.

SotA - - 49.8* 49.9* 76.8 92.2*

BART 15.1 19.7 38.2 41.6 64.0 81.1

RAG-Tok. 17.3 22.2 40.1 41.5 72.5 89.5RAG-Seq. 14.7 21.4 40.8 44.2

to more effective marginalization over documents. Furthermore, RAG can generate correct answers
even when the correct answer is not in any retrieved document, achieving 11.8% accuracy in such
cases for NQ, where an extractive model would score 0%.

4.2 Abstractive Question Answering

As shown in Table 2, RAG-Sequence outperforms BART on Open MS-MARCO NLG by 2.6 Bleu
points and 2.6 Rouge-L points. RAG approaches state-of-the-art model performance, which is
impressive given that (i) those models access gold passages with specific information required to
generate the reference answer, (ii) many questions are unanswerable without the gold passages, and
(iii) not all questions are answerable from Wikipedia alone. Table 3 shows some generated answers
from our models. Qualitatively, we find that RAG models hallucinate less and generate factually
correct text more often than BART. Later, we also show that RAG generations are more diverse than
BART generations (see §4.5).

4.3 Jeopardy Question Generation

Table 2 shows that RAG-Token performs better than RAG-Sequence on Jeopardy question generation,
with both models outperforming BART on Q-BLEU-1. Table 4 shows human evaluation results, over
452 pairs of generations from BART and RAG-Token. Evaluators indicated that BART was more
factual than RAG in only 7.1% of cases, while RAG was more factual in 42.7% of cases, and both
RAG and BART were factual in a further 17% of cases, clearly demonstrating the effectiveness of
RAG on the task over a state-of-the-art generation model. Evaluators also find RAG generations to
be more specific by a large margin. Table 3 shows typical generations from each model.

Jeopardy questions often contain two separate pieces of information, and RAG-Token may perform
best because it can generate responses that combine content from several documents. Figure 2 shows
an example. When generating “Sun”, the posterior is high for document 2 which mentions “The
Sun Also Rises”. Similarly, document 1 dominates the posterior when “A Farewell to Arms” is
generated. Intriguingly, after the first token of each book is generated, the document posterior flattens.
This observation suggests that the generator can complete the titles without depending on specific
documents. In other words, the model’s parametric knowledge is sufficient to complete the titles. We
find evidence for this hypothesis by feeding the BART-only baseline with the partial decoding "The
Sun. BART completes the generation "The Sun Also Rises" is a novel by this author of "The Sun
Also Rises" indicating the title "The Sun Also Rises" is stored in BART’s parameters. Similarly,
BART will complete the partial decoding "The Sun Also Rises" is a novel by this author of "A
with "The Sun Also Rises" is a novel by this author of "A Farewell to Arms". This example shows
how parametric and non-parametric memories work together—the non-parametric component helps
to guide the generation, drawing out specific knowledge stored in the parametric memory.

4.4 Fact Verification

Table 2 shows our results on FEVER. For 3-way classification, RAG scores are within 4.3% of
state-of-the-art models, which are complex pipeline systems with domain-specific architectures and
substantial engineering, trained using intermediate retrieval supervision, which RAG does not require.

6

Content Introduction Models Training and Inference Experiments Conclusion

Jeopardy Question Generation

Jeopardy is about guessing an entity from a fact about that entity.

Table 1: Open-Domain QA Test Scores. For TQA,
left column uses the standard test set for Open-
Domain QA, right column uses the TQA-Wiki
test set. See Appendix D for further details.

Model NQ TQA WQ CT

Closed
Book

T5-11B [52] 34.5 - /50.1 37.4 -
T5-11B+SSM[52] 36.6 - /60.5 44.7 -

Open
Book

REALM [20] 40.4 - / - 40.7 46.8
DPR [26] 41.5 57.9/ - 41.1 50.6

RAG-Token 44.1 55.2/66.1 45.5 50.0
RAG-Seq. 44.5 56.8/68.0 45.2 52.2

Table 2: Generation and classification Test Scores.
MS-MARCO SotA is [4], FEVER-3 is [68] and
FEVER-2 is [57] *Uses gold context/evidence.
Best model without gold access underlined.

Model Jeopardy MSMARCO FVR3 FVR2
B-1 QB-1 R-L B-1 Label Acc.

SotA - - 49.8* 49.9* 76.8 92.2*

BART 15.1 19.7 38.2 41.6 64.0 81.1

RAG-Tok. 17.3 22.2 40.1 41.5 72.5 89.5RAG-Seq. 14.7 21.4 40.8 44.2

to more effective marginalization over documents. Furthermore, RAG can generate correct answers
even when the correct answer is not in any retrieved document, achieving 11.8% accuracy in such
cases for NQ, where an extractive model would score 0%.

4.2 Abstractive Question Answering

As shown in Table 2, RAG-Sequence outperforms BART on Open MS-MARCO NLG by 2.6 Bleu
points and 2.6 Rouge-L points. RAG approaches state-of-the-art model performance, which is
impressive given that (i) those models access gold passages with specific information required to
generate the reference answer, (ii) many questions are unanswerable without the gold passages, and
(iii) not all questions are answerable from Wikipedia alone. Table 3 shows some generated answers
from our models. Qualitatively, we find that RAG models hallucinate less and generate factually
correct text more often than BART. Later, we also show that RAG generations are more diverse than
BART generations (see §4.5).

4.3 Jeopardy Question Generation

Table 2 shows that RAG-Token performs better than RAG-Sequence on Jeopardy question generation,
with both models outperforming BART on Q-BLEU-1. Table 4 shows human evaluation results, over
452 pairs of generations from BART and RAG-Token. Evaluators indicated that BART was more
factual than RAG in only 7.1% of cases, while RAG was more factual in 42.7% of cases, and both
RAG and BART were factual in a further 17% of cases, clearly demonstrating the effectiveness of
RAG on the task over a state-of-the-art generation model. Evaluators also find RAG generations to
be more specific by a large margin. Table 3 shows typical generations from each model.

Jeopardy questions often contain two separate pieces of information, and RAG-Token may perform
best because it can generate responses that combine content from several documents. Figure 2 shows
an example. When generating “Sun”, the posterior is high for document 2 which mentions “The
Sun Also Rises”. Similarly, document 1 dominates the posterior when “A Farewell to Arms” is
generated. Intriguingly, after the first token of each book is generated, the document posterior flattens.
This observation suggests that the generator can complete the titles without depending on specific
documents. In other words, the model’s parametric knowledge is sufficient to complete the titles. We
find evidence for this hypothesis by feeding the BART-only baseline with the partial decoding "The
Sun. BART completes the generation "The Sun Also Rises" is a novel by this author of "The Sun
Also Rises" indicating the title "The Sun Also Rises" is stored in BART’s parameters. Similarly,
BART will complete the partial decoding "The Sun Also Rises" is a novel by this author of "A
with "The Sun Also Rises" is a novel by this author of "A Farewell to Arms". This example shows
how parametric and non-parametric memories work together—the non-parametric component helps
to guide the generation, drawing out specific knowledge stored in the parametric memory.

4.4 Fact Verification

Table 2 shows our results on FEVER. For 3-way classification, RAG scores are within 4.3% of
state-of-the-art models, which are complex pipeline systems with domain-specific architectures and
substantial engineering, trained using intermediate retrieval supervision, which RAG does not require.

6

Jeopardy questions often contain two separate pieces of information, and
RAG-Token may perform best because it can generate responses that combine
content from several documents.

Content Introduction Models Training and Inference Experiments Conclusion

Fact Verification

This task requires classifying a claim is supported or reduted by Wikipedia, or
whether there is not enough information.

Table 1: Open-Domain QA Test Scores. For TQA,
left column uses the standard test set for Open-
Domain QA, right column uses the TQA-Wiki
test set. See Appendix D for further details.

Model NQ TQA WQ CT

Closed
Book

T5-11B [52] 34.5 - /50.1 37.4 -
T5-11B+SSM[52] 36.6 - /60.5 44.7 -

Open
Book

REALM [20] 40.4 - / - 40.7 46.8
DPR [26] 41.5 57.9/ - 41.1 50.6

RAG-Token 44.1 55.2/66.1 45.5 50.0
RAG-Seq. 44.5 56.8/68.0 45.2 52.2

Table 2: Generation and classification Test Scores.
MS-MARCO SotA is [4], FEVER-3 is [68] and
FEVER-2 is [57] *Uses gold context/evidence.
Best model without gold access underlined.

Model Jeopardy MSMARCO FVR3 FVR2
B-1 QB-1 R-L B-1 Label Acc.

SotA - - 49.8* 49.9* 76.8 92.2*

BART 15.1 19.7 38.2 41.6 64.0 81.1

RAG-Tok. 17.3 22.2 40.1 41.5 72.5 89.5RAG-Seq. 14.7 21.4 40.8 44.2

to more effective marginalization over documents. Furthermore, RAG can generate correct answers
even when the correct answer is not in any retrieved document, achieving 11.8% accuracy in such
cases for NQ, where an extractive model would score 0%.

4.2 Abstractive Question Answering

As shown in Table 2, RAG-Sequence outperforms BART on Open MS-MARCO NLG by 2.6 Bleu
points and 2.6 Rouge-L points. RAG approaches state-of-the-art model performance, which is
impressive given that (i) those models access gold passages with specific information required to
generate the reference answer, (ii) many questions are unanswerable without the gold passages, and
(iii) not all questions are answerable from Wikipedia alone. Table 3 shows some generated answers
from our models. Qualitatively, we find that RAG models hallucinate less and generate factually
correct text more often than BART. Later, we also show that RAG generations are more diverse than
BART generations (see §4.5).

4.3 Jeopardy Question Generation

Table 2 shows that RAG-Token performs better than RAG-Sequence on Jeopardy question generation,
with both models outperforming BART on Q-BLEU-1. Table 4 shows human evaluation results, over
452 pairs of generations from BART and RAG-Token. Evaluators indicated that BART was more
factual than RAG in only 7.1% of cases, while RAG was more factual in 42.7% of cases, and both
RAG and BART were factual in a further 17% of cases, clearly demonstrating the effectiveness of
RAG on the task over a state-of-the-art generation model. Evaluators also find RAG generations to
be more specific by a large margin. Table 3 shows typical generations from each model.

Jeopardy questions often contain two separate pieces of information, and RAG-Token may perform
best because it can generate responses that combine content from several documents. Figure 2 shows
an example. When generating “Sun”, the posterior is high for document 2 which mentions “The
Sun Also Rises”. Similarly, document 1 dominates the posterior when “A Farewell to Arms” is
generated. Intriguingly, after the first token of each book is generated, the document posterior flattens.
This observation suggests that the generator can complete the titles without depending on specific
documents. In other words, the model’s parametric knowledge is sufficient to complete the titles. We
find evidence for this hypothesis by feeding the BART-only baseline with the partial decoding "The
Sun. BART completes the generation "The Sun Also Rises" is a novel by this author of "The Sun
Also Rises" indicating the title "The Sun Also Rises" is stored in BART’s parameters. Similarly,
BART will complete the partial decoding "The Sun Also Rises" is a novel by this author of "A
with "The Sun Also Rises" is a novel by this author of "A Farewell to Arms". This example shows
how parametric and non-parametric memories work together—the non-parametric component helps
to guide the generation, drawing out specific knowledge stored in the parametric memory.

4.4 Fact Verification

Table 2 shows our results on FEVER. For 3-way classification, RAG scores are within 4.3% of
state-of-the-art models, which are complex pipeline systems with domain-specific architectures and
substantial engineering, trained using intermediate retrieval supervision, which RAG does not require.

6

Content Introduction Models Training and Inference Experiments Conclusion

Conclusion

Content Introduction Models Training and Inference Experiments Conclusion

Conclusion

Strength:

▶ Addresses important problems.

▶ General and relatively simple formulation.

Limitation (and Oppotunities):

▶ Does not actually solve the hallucination problem.

▶ Needs to run k times more inference passes during generation.

▶ The input x needs to be additionally processed by another model.

▶ The retrieving process is likely to be disk-IO intensive or memory demanding.

Thank you!

	Content
	Introduction
	Models
	Training and Inference
	Experiments
	Conclusion
	Appendix

