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Motivation

Pre-trained neural language models generate content based on parameterized
implicit knowledge base. Such models have several downsides:

» They cannot easily expand or revise their memory.

» They cannot straightforwardly provide insights into the predictions.

» They may produce “hallucinations”.

Hybrid models that combine parametric memory with non-parametric (i.e.
retrieval-based) memories may address these issues.
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Retriever p,(z|z) returns (top-K) probabilities over documents for query x.

Generator py(y;|x, z,y1..—1) generates a current token based on a context of the

previous ¢ — 1 tokens ¥;.;_1, the original input x, and a retrieved passage z.
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Marginalization
RAG treats the retrieved document as a latent variable and proposes two models

to marginalize over the latent documents in different ways to produce a
distribution over generated text.

p (z\x) ?
! = p(y|)
po(yilx, 2, Y1:-1)
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RAG-Sequence Model

The RAG-Sequence model uses the same retrieved document to generate the
complete sequence.

pRAG—Sequence(y|x) ~ Z pn(le’)pg(yll’, Z)
z€top-k(p(-|z))
N
= Z pﬂ(zyx)Hpe(yi‘x,zaylzi—l)

z€top-k(p(-[x)) i
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RAG-Token Model

The RAG-Token model draws a different latent document for each target token.
This allows the generator to choose content from several documents when
producing an answer.

PRAG-Token y|Jj H Z pn(z|x>p9(yi’x7Ziaylzz'—l)

i zetop-k(p(-|x))
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Retriever: DPR

py(z|x) o exp(d(2)"q(x)) d(z) = BERT4(2), q(z) = BERT,(2)

d(z) is a vector representation of a document produced by a BERT model and
q(z) is a vector representation of the query produced by another BERT model.
Calculating top-k(p,(-|z)) is a Maximum Inner Product Search (MIPS) problem,
which can be approximately solved in sub-linear time.
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Generator: BART
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BART is a seq2seq transformer model with 400M parameters. RAG concatenates
the input = and the retrieved document z to produce the input for BART.
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Training

Given a fine-tuning training corpus of input/output pairs (z;,y;), the retriever
and generator are jointly trained by minimizing the negative marginal
log-likelihood > ; —log p(y;|x;).

The document encoder BERT; is not updated during training as it is costly to do
so (the document index needs to be updated as the model changes).
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Decoding - RAG-Token

The RAG-Token model can be seen as a standard autoregressive seq2seq
generator with transition probability:

poilz,yic) = Y. polzlo)pe(uile, 2, yraa)
z€top-k(p(-[))

Standard beam-search decoder can be used to sample the output.

Conclusion
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Decoding - RAG-Sequence

For RAG-Sequence, RAG runs beam search for each document z, scoring each
hypothesis using pa(yi|x, z, y1..—1) and yielding a set of hypotheses Y. Some of
the hypotheses may not appear in the beams of all documents.

If a hypothesis 3 does not appear in a beam with document z, there are two
options. The first option is to run an additional forward pass to get

po(Yi|T, z,y1.i-1). This is refered to as “Thorough Decoding”. The other option
is to assume py(y|z, z;) ~ 0 if y was not generated during beam search for x, z;.
This is refered to as “Fast Decoding”.
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Setup

» Non-parametric knowledge: Dec. 2018 Wikipedia dump split into 100
word chunks, totaling 21M documents.

» MIPS solver: FAISS with Hierarchical Navigable Small World
approximation.

» Hyper-parameters: k € {5,10} when retrieving the top-k documents.
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Open-domain Question Answering

The four columns corresponds to four datasets.

Model NQ TQA wQ CT
Closed T5-11B[52] 345 - /50.1 374 -
Book  T5-11B+SSM[52] 36.6 - /60.5 447 -
Open REALM [20] 40.4 -/ - 40.7 46.8
Book DPR [26] 41,5 579/ - 41.1 50.6

RAG-Token  44.1 55.2/66.1 45.5 50.0

RAG-Seq. 44.5 56.8/68.0 452 52.2

RAG can generate correct answers even if it is not in any retrieved document,

where extractive models would score 0%.

Experiments
00@000

Conclusion
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Abstractive Question Answering
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Conclusion

This task consists of questions, ten gold passages retrieved from a search engine

for each question, and a full sentence answer annotated from the retrieved

passages.

RAG does not use the gold passages and relies only on its parametric and

non-parametric (Wikipedia) knowledges.

Model

Jeopardy MSMARCO
B-1 QB-1 R-L B-1

FVR3 FVR2
Label Acc.

- - 49.8% 49.9*

76.8 92.2*

15.1 19.7 382 41.6

64.0 81.1

RAG-Tok.
RAG-Seq.

17.3 222 40.1 415
147 21.4 40.8 44.2

72.5  89.5
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Jeopardy Question Generation

Jeopardy is about guessing an entity from a fact about that entity.

Model Jeopardy MSMARCO FVR3 FVR2
B-1 QB-1 R-L B-l Label Acc.

SotA - - 49.8% 49.9*% 76.8 92.2*%
BART 15.1 19.7 382 416 640 81.1

RAG-Tok. 173 222 401 415
RAG-Seq. 147 214 408 442 2> 893

Jeopardy questions often contain two separate pieces of information, and
RAG-Token may perform best because it can generate responses that combine

content from several documents.

Conclusion
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Fact Verification

This task requires classifying a claim is supported or reduted by Wikipedia, or
whether there is not enough information.

Model Jeopardy MSMARCO FVR3 FVR2
B-1 QB-1 R-L B-1 Label Acc.

SotA - - 49.8% 49.9* 768 92.2%
BART 15.1 19.7 382 416 640 81.1

RAG-Tok. 173 222 401 415
RAG-Seq. 147 214 408 442 /%5 823
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Conclusion

Strength:
» Addresses important problems.

» General and relatively simple formulation.

Limitation (and Oppotunities):
» Does not actually solve the hallucination problem.
» Needs to run k times more inference passes during generation.
» The input x needs to be additionally processed by another model.

» The retrieving process is likely to be disk-10 intensive or memory demanding.



Thank you!
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