
Apparate: Rethinking Early Exits to Tame

Latency-Throughput Tensions in ML Serving

Yinwei Dai1,2 Rui Pan1,2 Anand Iyer2 Kai Li1 Ravi Netravali1

1Princeton University
2Georgia Institute of Technology

Presenter: Shiwei Zhang

Introduction Background Challenges Design Evaluation Conclusion

Introduction

▶ Machine Learning (ML) inference has become a staple for request handling
in interactive applications such as traffic analytics, chatbots, and web
services

▶ Existing platforms impose harsh tradeoffs between throughput (cost) and
latency.

▶ This paper explores early exits (EE) to resolve this tension.

Introduction Background Challenges Design Evaluation Conclusion

Background

Introduction Background Challenges Design Evaluation Conclusion

Throuphput-Latency Tradeoff

model. The key is in leveraging the (now) redundant compu-
tations to enable continual and efficient adaptation.

Guided by this philosophy, Apparate runs directly atop ex-
isting serving platforms and begins by automatically con-
verting registered models into EE variants. Apparate’s EE
preparation strategy must strike a balance between support-
ing fine-grained runtime adaptation without burdening those
time-sensitive algorithms with (likely) unfruitful options. To
do so without developer effort, Apparate leans on guidance
from the original model design, crafting ramp locations and
architectures based on downstream model computations and
data flow for intermediates around the model. Original model
layers (and weights) are unchanged, and added ramps are
trained in parallel (for efficiency), but in a manner that pre-
serves their independence from other ramps.

Once deployed by serving platforms, Apparate continually
monitors EE operation in GPUs, tracking computations and
latency effects of each ramp, as well as outputs of the orig-
inal model (for accuracy ground truth). To tackle the mas-
sive space of configuration options, Apparate judiciously de-
couples tunable EE knobs: thresholds for existing ramps are
frequently and quickly tuned to ensure consistently high ac-
curacy, while costlier changes to the set of active ramps oc-
cur only periodically as a means for latency optimization.
For both control loops, Apparate leverages several funda-
mental properties of EEs to accelerate the tuning process.
For instance, the monotonic nature of accuracy drops (and
increases in latency savings) for higher thresholds motivates
Apparate’s greedy algorithm for threshold tuning which runs
up to 3 orders of magnitude faster than grid search while sac-
rificing only 0-3.8% of the potential wins.

We evaluated Apparate across a variety of recent CV
and NLP models (ranging from compressed to large lan-
guage models), multiple workloads in each domain, and
several serving platforms (TensorFlow-Serving [39], Clock-
work [22]). Compared to serving without EEs, Apparate im-
proves 25th percentile and median latencies by 70.2-94.2%
and 40.5-91.5% for CV, and 16.0-37.3% and 10.0-24.2% for
NLP, while imposing negligible impact on platform through-
put. Importantly, unlike existing EE proposals that yield ac-
curacy dips of 8.3-23.9%, we find that Apparate’s adaptation
strategies always met user-defined accuracy constraints.

2 BACKGROUND AND MOTIVATION

We start by overviewing existing ML serving platforms
(§2.1), highlighting the challenges they face in balancing
metrics that are important for system performance (i.e.,
throughput, resource utilization) and application interactiv-
ity, i.e., per-request latencies. We then describe the promis-
ing role that early exits can play in alleviating those tensions
(§2.2), and the challenges in realizing those benefits in prac-
tice (§2.3). Results here follow the methodology from §5.1,
and presented trends hold for all workloads used in the paper.

25 30
Latency (ms)

0

250

500
Th

ro
ug

hp
ut

 (q
ps

) resnet50

10 15 20
Latency (ms)

250
500
750

vgg13

50 100
Latency (ms)

50

100

bert-base

0 500 1000
Latency (ms)

10

15
gpt2-medium

Figure 1: Throughput-latency tradeoff in model serving. Re-
sults show serving times with batch sizes of 1-16.

2.1 Model Serving Platforms
ML models are routinely used to service requests in interac-
tive applications such as real-time video analytics [13, 49],
recommendation engines [50], or speech assistants [12]. To
manage such workloads, especially at large scale, applica-
tions employ serving platforms such as ONNX runtime [5],
TensorFlow-Serving [39], PyTorch Serve [9], Triton Infer-
ence Server [4], among others [17,22,44,49,60]. These plat-
forms ingest pre-trained model(s) from applications, often in
graph exchange formats like ONNX [6] and NNEF [2], and
are also granted access to a pool of compute resources (po-
tentially with ML accelerators such as GPUs) for inference.

Given the latency-sensitive nature of interactive appli-
cations, requests are most often accompanied with service
level objectives (SLOs) that indicate (un)acceptable response
times for the service at hand. In particular, responses deliv-
ered after an SLO expires are typically discarded or yield
severely degraded utility. Common SLOs are in the 10-100s
of milliseconds, e.g., for live video analytics [40, 49].

During operation, serving platforms queue up incoming
requests that can arrive at fixed or variable rates, and contin-
ually schedule jobs across the available compute resources.
An inference task may be scheduled to run on a single node
in a cluster, or may be distributed across multiple nodes [60].
State-of-the-art serving frameworks include optimizations
such as response caching [17], intelligent job placement to
aggressively pack GPU memory resources [49], or strategies
to mitigate CPU-GPU communication overheads [60].

Latency-Throughput tension. Real-world inference de-
ployments must handle large volumes of requests [25, 37].
To support the need for high throughput, serving platforms
resort to batching, whereby inputs are grouped into a sin-
gle high-dimensional tensor that moves through the model
in lockstep, kernel by kernel, with final per-request responses
being delivered at the same time. Larger batch sizes amortize
the cost of loading a kernel into GPU memory across more
inputs, and enable more effective use of the parallelism that
ML-focused hardware affords [17, 62].

Unfortunately, delivering the throughput necessary to sup-
port high request rates is directly at odds with per-request
latencies (Figure 1). On one hand, latency for an input is
minimized by scheduling inference as soon as the request
arrives with batch size of 1. On the other hand, throughput is
maximized by creating large batches using a queuing system
which directly inflates request latencies.

The problem. In navigating this tension, the key decision

2

Latency for an input is minimized by scheduling inference as soon as the request
arrives with batch size of 1.

Throughput is maximized by creating large batches using a queuing system which
directly inflates request latencies.

Introduction Background Challenges Design Evaluation Conclusion

Early-Exit Models

EE inserts exit points (also called ramps) into the model to conditionally
produce results without running some of the layers.EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language Models with 3D Parallelism

sparsely activated models, have been well trained and de-
ployed in many applications. It is an urgent need for the
community to truly understand the efficacy of early exiting
for LLMs at larger scales, which is indispensable for mak-
ing early exiting a useful and practical option in complex
scenarios that only sufficiently large LLMs can handle.

Challenges. The first and foremost question is how to
train an early-exit LLM that is too large to fit into the mem-
ory of one single device (e.g. GPU). While state-of-the-
art frameworks like Megatron-LM (Shoeybi et al., 2019;
Narayanan et al., 2021b), DeepSpeed (Rasley et al., 2020;
Smith et al., 2022), Alpa (Zheng et al., 2022), and many
more, support training standard LLMs at large scales with
data parallelism and model parallelism (including tensor,
sequence, and pipeline parallelism), they do not provide
native support for early-exit LLMs. One particular chal-
lenge lies in pipeline parallelism (Narayanan et al., 2019;
2021a; Fan et al., 2021), which partitions the model along
the depth dimension into multiple pipeline stages, connected
by limited point-to-point communication between devices;
this seems to contradict training early-exit models, as the
training objective is typically an aggregation of losses for
multiple exits that are now located separately on different
pipeline stages. Despite the necessity of pipeline parallelism
in many scenarios, we are not aware of any implementation
that supports training early-exit LLMs with it.

Moreover, training efficiency for early-exit generative LLMs
requires special design, since each early exit contains (at
least) a large output embedding matrix that transforms hid-
den states into logits on the vocabulary, which can constitute
a non-trivial proportion of the whole model. Naive imple-
mentation of early-exit LLM training can cause large com-
putational overhead compared to standard LLM training.

Finally, with regard to autoregressive generation (where to-
kens are generated one by one, depending on previously
generated tokens via the attention mechanism), naive imple-
mentation of early-exit inference is not compatible with KV
caching, a standard technique of storing the keys and values
of previously generated tokens at each layer. Indeed, if the
current token is generated via early exiting at some layer,
then its KV caches in later layers are missing, which hinders
the generation of future tokens. Given that KV caching
is enabled by default in most cases, the efficacy of early
exiting for autoregressive generation might be questionable
if its conflict with KV caching is not well resolved.

Main contributions. We propose EE-LLM, a system for
large-scale training and inference of early-exit (EE) LLMs
with 3D parallelism, which is designed to tackle the afore-
mentioned challenges. EE-LLM is built upon Megatron-LM
(Shoeybi et al., 2019; Narayanan et al., 2021b; Smith et al.,
2022), and augments it with various functionalities for early

𝜽!
𝒙!

𝒐"

𝜽#
𝒙# 𝜽"

𝒙"Input

𝝓! 𝝓# 𝝓"

𝒐#𝒐!

Early-exit
layers

Figure 1: The model architecture of an early-exit LLM.
Additional components compared to a standard LLM are
highlighted in blue. Each θi represents a sequence of Trans-
former layers in the backbone of the LLM, with some ad-
ditional modules in θ1 for input processing. Each ϕi repre-
sents an early or final-exit layer that converts hidden states
xi into output oi, e.g. logits for next-token prediction.

exiting. In addition to compatibility with existing functional-
ities of 3D parallelism provided by Megatron-LM, EE-LLM
also implements a variety of algorithmic innovations, includ-
ing a lightweight method that facilitates backpropagation for
the early-exit training objective through pipeline stages, var-
ious techniques of leveraging idle resources in the original
pipeline schedule for computation related to early-exit lay-
ers, and two approaches of early-exit inference that are com-
patible with KV caching. Implementation of EE-LLM has
been well optimized for maximum training and inference
efficiency. Our analytical and empirical study confirms that,
with negligible computational overhead caused by early-exit
layers during training with 3D parallelism, one obtains an
early-exit LLM that generates tokens with adaptive token-
wise exit selection, achieving outstanding inference speedup
without compromising output quality. With EE-LLM, it is
now possible to train and deploy early-exit LLMs that are
as large as the maximum sizes of standard LLMs allowed
by Megatron-LM, given the same amount of computational
resources. The source code for EE-LLM can be found at
https://github.com/pan-x-c/EE-LLM.

Organization. Section 2 provides a high-level overview
of EE-LLM, while Sections 3 and 4 focus on training and in-
ference, respectively. The efficacy of EE-LLM is validated
by numerical experiments in Section 5. The appendix in-
cludes extended preliminaries and related works, additional
experiments, as well as more details about the training effi-
ciency, advanced features, and implementation of EE-LLM.

2. An overview of EE-LLM
This section provides an overview of our system for scaling
up sizes, training and inference of early-exit LLMs, with
flexible configurations and a wide range of functionalities.

Model architectures. We implement in EE-LLM an early-
exit Transformer architecture, which is built upon the gener-
ative pre-training (GPT) Transformer architecture (Radford

2

For example, an object detection model do not need to run all layers to decide
that there is nothing on an empty video frame.

Exiting decisions are made by comparing the entropy in the predicted result to a
threshold.

Introduction Background Challenges Design Evaluation Conclusion

Challenges

Introduction Background Challenges Design Evaluation Conclusion

C1: Latency and Resource Overheads

▶ The ramps take up GPU memory (6.56% for BERT-Base).

▶ The additional exiting decisions increase latency of “hard” requests (up to
22%).

Introduction Background Challenges Design Evaluation Conclusion

C2: Frequent and Costly Adaptation

The optimal configurations (active
ramps and their thresholds) changes
frequently.

(a) BERT-base; Amazon reviews

(b) ResNet50; random corpus video
Figure 6: Optimal EE configurations change frequently.
Streaming workloads were divided into chunks of 64 requests.
Dot presence show a ramp that was part of the optimal con-
fig for a chunk, while transparencies indicate threshold values
(opaque is higher).

highest-throughput results in Figure 3 to account for exiting
by subtracting the time saved for each exiting input, i.e., the
difference in time for passing an input to the end of its opti-
mal ramp versus passing it to the end of the model (without
any ramps present). Note that these results are conservative
upper bounds in that they do not reduce queuing delays or al-
ter job scheduling. As shown in Figure 5, without changing
queueing decisions, EEs can bring 35-54.7% and 17.9-26%
improvements in median and 95th percentile latencies rela-
tive to running existing serving systems alone.

2.3 Challenges
Despite numerous EE proposal from the ML community [28,
36, 46, 53, 57, 58, 64], and their potential benefits for serving
platforms, multiple issues complicate their use in practice,
leading to low adoption rates. We describe them in turn.
C1: Latency and resource overheads. Although exiting can
enable certain inputs to eschew downstream model computa-
tions, exit ramps impose two new overheads on model serv-
ing. First, to be used, ramps must also be loaded into GPU
memory which is an increasingly precious resource as mod-
els grow in size [31, 48, 60] and inference shifts to resource-
constrained settings [23,40]. For instance, DeeBERT inflates
overall memory requirements by 6.56% compared to BERT-
base. Second, certain inputs may be too “hard” to accurately
exit at an intermediate ramp. In these cases, overall serving
latency mildly grows as unsuccessful exiting decisions are
made, e.g., inputs that cannot exit at any ramp slow by 22.0%
and 19.5% with BranchyNet and DeeBERT.
C2: Frequent and costly adaptation. As shown in Fig-
ure 6, the evolving nature of workloads for interactive appli-
cations [35, 51] brings frequent changes in the best EE con-
figuration at any time, i.e., the set of active ramps (and their
thresholds) that maximize latency savings without sacrific-
ing response accuracy or exceeding available memory. Un-

Strategy\Workload CV NLP
Initial Only 84.5% (74.3%) 86.8% (73.6%)

Uniformly Sampled 90.3% (64.2%) 87.7% (69.4%)
Continual Tuning 98.6% (43.5%) 98.3% (26.6%)

Table 1: Thresholds need frequent tuning to avoid accuracy
loss. Continual tuning kicks in when chunk accuracy < 99%.
Results list avg accuracy (median latency wins).

fortunately, the large body of EE literature is unaccompanied
by any policy for tuning ramps and thresholds during serv-
ing. Instead, proposed EE models are equipped with the max
number of ramps, and mandate users to perform one-time
tuning of thresholds. Such tuning is non-trivial and fails to
cope with workload dynamism. For example, Table 1 shows
how one-time tuning on initial or sampled data brings 8.3-
14.5% drops in accuracy relative to continual tuning. Worse,
the space of configurations is untenably large, with many
ramp options (i.e., at any layer, with any computation) and
a continuous space of possible threshold values for each.
C3: Lack of accuracy feedback. EE ramp decisions are ulti-
mately confidence-driven and may result in accuracy degra-
dations (as shown above). In production scenarios, serving
optimizations that deliver accuracy reductions of more than
1-2% are generally considered unacceptable [14]. Yet, de-
spite this strict constraint, once deployed, EE models do
not provide any indication of accuracy drops; indeed, when
an exit is taken, the corresponding input does not pass
through the remaining model layers, and the original (non-
EE) model’s prediction is never revealed. Thus, with early
exiting, we lack mechanisms to determine when accuracy
degradations are arising and EE tuning is required.
C4: Incompatibility with batching. Lastly, although EE de-
cisions do not directly conflict with queuing decisions in
serving platforms, combining exiting and batching presents
practical challenges. In particular, as inputs exit at ramps,
batch sizes for already scheduled inference tasks naturally
shrink, leading to resource underutilization for the rest of the
model’s execution. Batch reforming [4] could help, but adds
undue latency from added CPU-GPU data transfers; recent
proposals [29,38] aim to address these communication over-
heads but fail to generalize across hardware configurations.1

3 DESIGN

Apparate is an end-to-end system that automatically inte-
grates early exits into models and manages their operation
throughout the inference process. Its overarching goal is to
optimize per-request latencies while adhering to tight accu-
racy constraints and throughput goals. Our key insight is in
rethinking the way that EEs are configured and the benefits
they are expected to deliver. In particular, rather than using
EEs in the traditional way – where inputs exit model infer-
ence to provide both latency and computational benefits –

1Solving this challenge directly is outside the scope of this paper. We
note that this would bring latency and compute wins from EEs, but would
forego accuracy feedback (and thus, adaptation).

4

(a) BERT-base; Amazon reviews

(b) ResNet50; random corpus video
Figure 6: Optimal EE configurations change frequently.
Streaming workloads were divided into chunks of 64 requests.
Dot presence show a ramp that was part of the optimal con-
fig for a chunk, while transparencies indicate threshold values
(opaque is higher).

highest-throughput results in Figure 3 to account for exiting
by subtracting the time saved for each exiting input, i.e., the
difference in time for passing an input to the end of its opti-
mal ramp versus passing it to the end of the model (without
any ramps present). Note that these results are conservative
upper bounds in that they do not reduce queuing delays or al-
ter job scheduling. As shown in Figure 5, without changing
queueing decisions, EEs can bring 35-54.7% and 17.9-26%
improvements in median and 95th percentile latencies rela-
tive to running existing serving systems alone.

2.3 Challenges
Despite numerous EE proposal from the ML community [28,
36, 46, 53, 57, 58, 64], and their potential benefits for serving
platforms, multiple issues complicate their use in practice,
leading to low adoption rates. We describe them in turn.
C1: Latency and resource overheads. Although exiting can
enable certain inputs to eschew downstream model computa-
tions, exit ramps impose two new overheads on model serv-
ing. First, to be used, ramps must also be loaded into GPU
memory which is an increasingly precious resource as mod-
els grow in size [31, 48, 60] and inference shifts to resource-
constrained settings [23,40]. For instance, DeeBERT inflates
overall memory requirements by 6.56% compared to BERT-
base. Second, certain inputs may be too “hard” to accurately
exit at an intermediate ramp. In these cases, overall serving
latency mildly grows as unsuccessful exiting decisions are
made, e.g., inputs that cannot exit at any ramp slow by 22.0%
and 19.5% with BranchyNet and DeeBERT.
C2: Frequent and costly adaptation. As shown in Fig-
ure 6, the evolving nature of workloads for interactive appli-
cations [35, 51] brings frequent changes in the best EE con-
figuration at any time, i.e., the set of active ramps (and their
thresholds) that maximize latency savings without sacrific-
ing response accuracy or exceeding available memory. Un-

Strategy\Workload CV NLP
Initial Only 84.5% (74.3%) 86.8% (73.6%)

Uniformly Sampled 90.3% (64.2%) 87.7% (69.4%)
Continual Tuning 98.6% (43.5%) 98.3% (26.6%)

Table 1: Thresholds need frequent tuning to avoid accuracy
loss. Continual tuning kicks in when chunk accuracy < 99%.
Results list avg accuracy (median latency wins).

fortunately, the large body of EE literature is unaccompanied
by any policy for tuning ramps and thresholds during serv-
ing. Instead, proposed EE models are equipped with the max
number of ramps, and mandate users to perform one-time
tuning of thresholds. Such tuning is non-trivial and fails to
cope with workload dynamism. For example, Table 1 shows
how one-time tuning on initial or sampled data brings 8.3-
14.5% drops in accuracy relative to continual tuning. Worse,
the space of configurations is untenably large, with many
ramp options (i.e., at any layer, with any computation) and
a continuous space of possible threshold values for each.
C3: Lack of accuracy feedback. EE ramp decisions are ulti-
mately confidence-driven and may result in accuracy degra-
dations (as shown above). In production scenarios, serving
optimizations that deliver accuracy reductions of more than
1-2% are generally considered unacceptable [14]. Yet, de-
spite this strict constraint, once deployed, EE models do
not provide any indication of accuracy drops; indeed, when
an exit is taken, the corresponding input does not pass
through the remaining model layers, and the original (non-
EE) model’s prediction is never revealed. Thus, with early
exiting, we lack mechanisms to determine when accuracy
degradations are arising and EE tuning is required.
C4: Incompatibility with batching. Lastly, although EE de-
cisions do not directly conflict with queuing decisions in
serving platforms, combining exiting and batching presents
practical challenges. In particular, as inputs exit at ramps,
batch sizes for already scheduled inference tasks naturally
shrink, leading to resource underutilization for the rest of the
model’s execution. Batch reforming [4] could help, but adds
undue latency from added CPU-GPU data transfers; recent
proposals [29,38] aim to address these communication over-
heads but fail to generalize across hardware configurations.1

3 DESIGN

Apparate is an end-to-end system that automatically inte-
grates early exits into models and manages their operation
throughout the inference process. Its overarching goal is to
optimize per-request latencies while adhering to tight accu-
racy constraints and throughput goals. Our key insight is in
rethinking the way that EEs are configured and the benefits
they are expected to deliver. In particular, rather than using
EEs in the traditional way – where inputs exit model infer-
ence to provide both latency and computational benefits –

1Solving this challenge directly is outside the scope of this paper. We
note that this would bring latency and compute wins from EEs, but would
forego accuracy feedback (and thus, adaptation).

4

Introduction Background Challenges Design Evaluation Conclusion

C3: Lack of Accuracy Feedback

In production scenarios, serving optimizations that deliver accuracy reductions of
more than 1-2% are generally considered unacceptable. However, current EE
proposals suffer from accuracy drops up to 23.9%.

Once deployed, EE models do not provide indication of accuracy drops. When an
exit is taken, the corresponding input does not pass throuput the remaining
model layers, and the original model’s prediction is never revealed.

Introduction Background Challenges Design Evaluation Conclusion

C4: Incompatibility with batching

When inputs exit at ramps, the batch size for already scheduled tasks shrinks,
leading to resource underutilization for the rest of the execution.

0 5 10 15 20 25 30 35 40
Frame ID

4
6
8

10
12
14

Nu
m

be
r o

f C
ar

s

Figure 2: Object counts in videos vary frequently and thus need
low-latency responses. Results use a random 30-fps video in our
corpus and the FasterRCNN detector.

20 40 60 80
Latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

bs=1

avg bs=4.0
avg bs=7.97
avg bs=14.27

(a) ResNet50

50 100 150
Latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

bs=1

avg bs=3.91
avg bs=4.36
avg bs=7.99

(b) BERT-base

Figure 3: Tuning platform knobs lowers latencies but harms
throughput. Results vary TF-Serve’s max batch size from 4-16.
Gray lines show min serving delay per model (batch of 1). CV
uses a random video in our set; NLP uses Amazon reviews [10].

that serving platforms face is when to drain queued requests
and schedule them for inference. Certain platforms [17, 22,
49] take an all-or-nothing viewpoint on latency, with ad-
herence to SLOs considered complete success, and viola-
tions viewed as complete failure. Accordingly, these plat-
forms schedule inference jobs in a work-conserving man-
ner and select the max batch size that limits SLO violations
for queued requests. However, many interactive applications
present a more nuanced latency story where sub-SLO re-
sponses are not equally useful. For instance, live video an-
alytics results can change every frame, i.e. 33 ms (Figure 2);
faster responses ensure up-to-date perception of the environ-
ment. Similarly, for speech assistance, faster responses are
favored to keep conversational interactivity high [26, 59].

Other platforms [4, 9, 39] provide more flexibility by
exposing tunable knobs to guide queue management. For
instance, applications can configure max batch size and
batch timeout micros parameters that set a cap on batch size
or inter-job scheduling durations. However, as shown in Fig-
ure 3, such knobs do little to ease the throughput-latency ten-
sion, and instead expose harsh tradeoffs: across both CV and
NLP workloads, tuning these knobs for median latency im-
provements of 17.3-39.1% brings 1.1-3.6× reductions in av-
erage batch sizes (and proportional hits on throughput).

Takeaway. Existing platform configurations and knobs fail
to practically remediate the throughput-latency tension, and
instead simply navigate (often) unacceptable tradeoff points
between the two goals. Given ever-growing request rates and
the need for high throughput, we ask if there is a middle-
ground: whereby new serving adaptations enable lower per-
request latencies (moving closer to the lower-bound serving
times in Figure 3) without harming platform throughput.

La
ye

r 1

B
at

ch
 s

iz
e

16

1 sample
exits

La
ye

r 2
2 samples

exit

15
 s

am
pl

es

11
 s

am
pl

es
co

nt
in

ue
…

La
ye

r 1
2

Remaining
 samples exit

Original model

…

… Ramp12Ramp2 Ramp2

La
ye

r 3

2 samples
exit

13
 s

am
pl

es

Ramp3

Figure 4: Early exit networks enable early termination of inputs
at intermediate layers, lowering both compute and latency.

0 20 40 60 80
Latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

Vanilla
Optimal

(a) ResNet50

0 50 100 150
Latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

Vanilla
Optimal

(b) BERT-base
Figure 5: EEs can lower latencies without harming throughput.
Results modulate latencies from TF-Serve with original/vanilla
models (Figure 3) based on optimal exiting.

2.2 Early-Exit Models
Early (or multi) exit models [53,57] present an alternate way
to address this tension by rethinking the granularity of infer-
ence. As shown in Figure 4, the key premise is that certain
‘easy’ inputs may not require the full predictive power of
a model to generate an accurate result. Instead, results for
such inputs may be predictable from the values at intermedi-
ate layers. In such cases, the foregone model execution can
yield proportional reductions in both per-request latencies
and compute footprints. Thus, the goal with early exits (EEs)
is to determine, on a per-input basis, the earliest model layer
at which an accurate response can be generated.

To use EEs, intermediate layers in a model are augmented
with ramps of computation. These ramps ingest the values
output by the layers they are attached to and parse them to
predict the final model’s result, e.g., a classification label.
Ramps can perform arbitrary degrees of computation to ar-
rive at a potential result. Exiting decisions at each ramp are
made by comparing the entropy in the predicted result (or av-
eraged over the past k ramps) to a preset threshold. Thresh-
olds are set to balance latency and compute wins with po-
tential dips in accuracy; a higher threshold implies lower re-
quired confidence for exiting, and thus more exiting.

Potential benefits. To understand the effect that EEs can
have on the latency-throughput tension, we considered off-
the-shelf EE variants for the models used in Figure 3:
BranchyNet [53] (for CV) and DeeBERT [57] (for NLP). For
each model-input pair, we identified the optimal exit point
defined as the earliest exit ramp that predicted the correct re-
sponse for the input, i.e., the ramp which assigned the max-
imum probability to the correct label. We then modified the

3

Introduction Background Challenges Design Evaluation Conclusion

Design

Introduction Background Challenges Design Evaluation Conclusion

Key Design

Apparate focuses solely on latency savings by allowing results to exit, with
inputs still running to completion.

▶ Foregoing true exiting eliminates batch size changes during inference (C4).

▶ Running to completion grants Apparate with direct and continual feedback
on accuracy (C3).

▶ This feedback provides the requisite information for continual adaptation of
EE configurations (C1, C2).

Introduction Background Challenges Design Evaluation Conclusion

System Architecture

① Submit
Model

③ EE
Model

Serving
System

① Requests
& SLOs

④ Profiling ⑦ EE
Config

Controller

⑤ Threshold
Tuning

⑥ Ramp
Adjustment

Triggered by
Accuracy Loss

Every X
Requests

Per-ramp
Accuracy &
Confidence

Apparate

② Model Prep
& Analysis

La
te

nc
ie

s

Figure 7: System architecture.

Apparate focuses solely on latency savings by allowing re-
sults to exit, with inputs still running to completion. Forego-
ing true exiting (and thus, compute savings) eliminates batch
size changes during inference (C4), while also granting Ap-
parate with direct and continual feedback on EE accuracy
(C3). This feedback, in turn, provides the requisite signals
for Apparate’s strategy to continually adapt EE configura-
tions to maximize latency savings while catering to resource
constraints and workload dynamics (C1, C2).

Figure 7 overviews Apparate’s workflow, which runs atop
existing serving platforms. Users register inference jobs as
normal 1 , providing models and SLOs. In addition, Appa-
rate introduces two parameters: (1) ramp aggression, which
(along with compute restrictions) bounds the number of ac-
tive ramps in terms of % impact on worst-case latency (and
throughput), and (2) accuracy constraint which indicates
how much (if any) accuracy loss is acceptable relative to
running the submitted model on all inputs without exiting.
With these inputs, Apparate’s controller begins by configur-
ing the provided model with EEs 2 , performing a graph-
level assessment to determine suitable positions for ramps,
and training those ramps on bootstrap data (§3.1). The re-
sulting model is passed to the serving platform for deploy-
ment 3 , after which Apparate shifts to management mode.
In this phase, as requests arrive and inference tasks are sched-
uled, Apparate’s controller gathers real-time feedback on
both the utility of each ramp (overheads vs. latency savings)
and achieved accuracies (relative to the original model) 4 .
This information is continually used to adapt the EE con-
figuration 7 at different time scales: rapid threshold tuning
for accuracy preservation (§3.2) 5 , and less frequent ramp
adjustments for latency optimization (§3.3) 6 .

Note that Apparate’s controller runs on a CPU, with GPUs
streaming per-ramp/batch profiling information in a non-
blocking fashion. This is possible since inputs pass to the end
of models with Apparate, irrespective of exiting decisions.
Further, tasks associated with model handling and serving
are handled by the underlying serving platform, e.g., loading
from disk, queuing.

Weight Layer

ReLU

Weight Layer

Add

ReLU

Input

Multi-Head
Attention

Input

Add & Norm

Add & Norm

Feed Forward

Input

Conv Layer

Conv Layer

Conv Layer

Pooling

(a) ResNet (b) VGG (c) BERT

❌❌✅✅❌❌ ✅✅✅✅✅ ✅✅❌❌❌

R
es

N
et

 B
lo

ck

En
co

de
r

Figure 8: Apparate only injects ramps that make full use of
available data flows at that part of the model.

3.1 Preparing Models with Early Exits
Upon job registration with a generic DNN, Apparate’s ini-
tial task is to automatically prepare that model to leverage
EEs, without requiring any developer effort. This phase re-
peats any time the submitted model changes, e.g., continual
retraining to cope with data drift [13, 35, 51].

Ramp locations. Apparate accepts a model in the ONNX
format, a widely used IR that represents the computation as
a directed acyclic graph [6]. Once ingested, Apparate must
first identify candidate layers for ramp addition. The goal
is to maximize ramp coverage across the model (to provide
more configuration options for Apparate’s runtime manage-
ment), while avoiding ramps that are unlikely to be fruitful
(but add complexity adaptation decisions). To balance these
aspects for diverse models, Apparate marks feasible ramp lo-
cations as those where operators are cut vertices, i.e., a vertex
whose removal would disconnect a graph into two or more
disjoint sub-graphs. In other words, no edge can start before
a ramp and re-enter the model’s computation after the ramp.

The idea is that such ramps take advantage of all avail-
able data outputs from the original model’s processing to
that point, boosting their chance at accurate predictions.
As an example, consider families like ResNet or BERT
which enable deep models by stitching together series of
residual blocks, i.e., ResNet blocks for convolutions, or
BERT encoders that each embed multi-head attention and
feed-forward network residual blocks. To avoid performance
degradations late in the model, the output of each block is ul-
timately a combination of its processing results and its input.
In such scenarios, Apparate injects ramps between blocks,
but not within each block to avoid ramps making decisions
on partial data, i.e., ignoring block inputs. In contrast, for
VGG models, ramps are feasible at all layers since their in-
termediates represent the full extent of data flow throughout
the model. Figure 8 depicts these examples.

Overall, this strategy results in 9.2-68.4% of layers hav-
ing ramps for the models in our corpus, which we empir-
ically observe is sufficient to adapt to dynamic workloads
(§5.2). However, we note that Apparate can directly support
any other ramp configuration strategy, and offers a simple

5

Introduction Background Challenges Design Evaluation Conclusion

Ramp Injection

Apparate considers layers that are cut vertices as EE candidates.

① Submit
Model

③ EE
Model

Serving
System

① Requests
& SLOs

④ Profiling ⑦ EE
Config

Controller

⑤ Threshold
Tuning

⑥ Ramp
Adjustment

Triggered by
Accuracy Loss

Every X
Requests

Per-ramp
Accuracy &
Confidence

Apparate

② Model Prep
& Analysis

La
te

nc
ie

s

Figure 7: System architecture.

Apparate focuses solely on latency savings by allowing re-
sults to exit, with inputs still running to completion. Forego-
ing true exiting (and thus, compute savings) eliminates batch
size changes during inference (C4), while also granting Ap-
parate with direct and continual feedback on EE accuracy
(C3). This feedback, in turn, provides the requisite signals
for Apparate’s strategy to continually adapt EE configura-
tions to maximize latency savings while catering to resource
constraints and workload dynamics (C1, C2).

Figure 7 overviews Apparate’s workflow, which runs atop
existing serving platforms. Users register inference jobs as
normal 1 , providing models and SLOs. In addition, Appa-
rate introduces two parameters: (1) ramp aggression, which
(along with compute restrictions) bounds the number of ac-
tive ramps in terms of % impact on worst-case latency (and
throughput), and (2) accuracy constraint which indicates
how much (if any) accuracy loss is acceptable relative to
running the submitted model on all inputs without exiting.
With these inputs, Apparate’s controller begins by configur-
ing the provided model with EEs 2 , performing a graph-
level assessment to determine suitable positions for ramps,
and training those ramps on bootstrap data (§3.1). The re-
sulting model is passed to the serving platform for deploy-
ment 3 , after which Apparate shifts to management mode.
In this phase, as requests arrive and inference tasks are sched-
uled, Apparate’s controller gathers real-time feedback on
both the utility of each ramp (overheads vs. latency savings)
and achieved accuracies (relative to the original model) 4 .
This information is continually used to adapt the EE con-
figuration 7 at different time scales: rapid threshold tuning
for accuracy preservation (§3.2) 5 , and less frequent ramp
adjustments for latency optimization (§3.3) 6 .

Note that Apparate’s controller runs on a CPU, with GPUs
streaming per-ramp/batch profiling information in a non-
blocking fashion. This is possible since inputs pass to the end
of models with Apparate, irrespective of exiting decisions.
Further, tasks associated with model handling and serving
are handled by the underlying serving platform, e.g., loading
from disk, queuing.

Weight Layer

ReLU

Weight Layer

Add

ReLU

Input

Multi-Head
Attention

Input

Add & Norm

Add & Norm

Feed Forward

Input

Conv Layer

Conv Layer

Conv Layer

Pooling

(a) ResNet (b) VGG (c) BERT

❌❌✅✅❌❌ ✅✅✅✅✅ ✅✅❌❌❌

R
es

N
et

 B
lo

ck

En
co

de
r

Figure 8: Apparate only injects ramps that make full use of
available data flows at that part of the model.

3.1 Preparing Models with Early Exits
Upon job registration with a generic DNN, Apparate’s ini-
tial task is to automatically prepare that model to leverage
EEs, without requiring any developer effort. This phase re-
peats any time the submitted model changes, e.g., continual
retraining to cope with data drift [13, 35, 51].

Ramp locations. Apparate accepts a model in the ONNX
format, a widely used IR that represents the computation as
a directed acyclic graph [6]. Once ingested, Apparate must
first identify candidate layers for ramp addition. The goal
is to maximize ramp coverage across the model (to provide
more configuration options for Apparate’s runtime manage-
ment), while avoiding ramps that are unlikely to be fruitful
(but add complexity adaptation decisions). To balance these
aspects for diverse models, Apparate marks feasible ramp lo-
cations as those where operators are cut vertices, i.e., a vertex
whose removal would disconnect a graph into two or more
disjoint sub-graphs. In other words, no edge can start before
a ramp and re-enter the model’s computation after the ramp.

The idea is that such ramps take advantage of all avail-
able data outputs from the original model’s processing to
that point, boosting their chance at accurate predictions.
As an example, consider families like ResNet or BERT
which enable deep models by stitching together series of
residual blocks, i.e., ResNet blocks for convolutions, or
BERT encoders that each embed multi-head attention and
feed-forward network residual blocks. To avoid performance
degradations late in the model, the output of each block is ul-
timately a combination of its processing results and its input.
In such scenarios, Apparate injects ramps between blocks,
but not within each block to avoid ramps making decisions
on partial data, i.e., ignoring block inputs. In contrast, for
VGG models, ramps are feasible at all layers since their in-
termediates represent the full extent of data flow throughout
the model. Figure 8 depicts these examples.

Overall, this strategy results in 9.2-68.4% of layers hav-
ing ramps for the models in our corpus, which we empir-
ically observe is sufficient to adapt to dynamic workloads
(§5.2). However, we note that Apparate can directly support
any other ramp configuration strategy, and offers a simple

5

Introduction Background Challenges Design Evaluation Conclusion

Ramp Architectures

Apparate chooses many lightweight ramps instead of fewer expensive ramps.

CV NLP
0

10

20

30

M
ed

ia
n

In
fe

re
nc

e
La

te
nc

y
(m

s)
5.56 5.157.2 9.5710.17

27.9

Many Ramps Some Fewer

Figure 9: More lightweight ramps boost EE savings. Results
compare Apparate’s default ramps (many ramps) with versions
that use fewer, more expensive ramps, i.e., adding convolutional
layers for CV, or more fully-connected/pooling layers for NLP.

API for developers to express ramp policies or restrictions.
Moreover, for each feasible ramp, Apparate’s runtime moni-
toring (§3.2-3.3) ultimately monitors its accuracy and utility
(and thus, if it is ever activated) for the workload at hand.

Ramp architectures. For each feasible ramp location, Ap-
parate must determine the style of ramp computations to use.
Recall from §2 that ramps can ultimately be composed of
arbitrary layers and computations, with the only prerequi-
site being that the final layer sufficiently mimics that of the
original model to ensure that response formats match. Deter-
mining the appropriate ramp complexity in this large space
presents a tradeoff: additional computation can improve the
exit capabilities of a ramp, but comes at the expense of (1) in-
creased ramp latency, and (2) coarser flexibility and coverage
at runtime since ramps become illogical if their computation
exceeds that in the original model up until the next ramp.

Apparate opts for the shallowest ramps that can trans-
form the intermediates at any layer into a final model pre-
diction. Specifically, ramps comprise the model’s final fully-
connected (fc) layer, prepended with a lightweight pooling
operation that reduces the dimensionality of intermediates to
ensure compatability with the fc layer. This manifests differ-
ently for various model types. For instance, for vision models
like ResNet, pooling is simply the model’s penultimate layer.
In contrast, for BERT, only the basic operator is drawn from
the BERT pooler module, i.e., extracting the hidden state cor-
responding to the first token [19]. Note that, for all models,
the input width of the fc layer is modified to match that of
the intermediates at each ramp location; the output remains
unchanged to preserve result formats.

Figure 9 evaluates this methodology by comparing Ap-
parate’s ramps with two, more expensive alternatives. With
ResNet, to mimic model operations following each ramp, we
add 1-2 convolution layers prior to pooling. For BERT, we
consider two approaches: (1) add two fc layers after pool-
ing, each with reduced width to shrink inputs to the final
fc, and (2) inspired by DeeBERT [57], replacing the simple
pooling operator with the entire BERT pooler block (which
also includes dense linear and activation layers) and adding
a dropout after pooling as in the original model. In all cases,
the number of ramps is subject to the same ramp budget
(i.e., Apparate’s default uses the most ramps), ramps are uni-

formly spaced across feasible positions in each model, and
thresholds are optimally selected as in §2.2.

As shown, and in line with reflections from prior hand-
designed EE models [53], we observe that the additional
computation has minimal effect on ramp effectiveness. For
example, median latencies are 1.3-1.8× and 1.9-5.4× larger
with Apparate’s default ramps than the more complex alter-
natives for CV and NLP. Nonetheless, to showcase Appa-
rate’s generality, we consider other ramp styles in §5.4.

Training ramps and deploying models. To determine the
appropriate weights for each ramp, Apparate relies on an ini-
tial dataset that can either be user-provided or auto-generated
by running the original model on historical data. Regardless,
during training, Apparate freezes the original model weights
to ensure that non-EE behavior and feedback for tuning EEs
is unchanged from the user’s original intentions. In addition,
Apparate enforces that all inputs are used to train all ramps,
i.e., exiting is prohibited during training. This ensures that
ramps are trained independently of the presence (or behav-
ior) of any upstream ramps, which is crucial since the set of
active ramps can vary at runtime. Further, such independence
and the model freezing enable loss calculations to be back-
wards propagated in parallel across ramps, rapidly speed-
ing up training despite Apparate’s use of many lightweight
ramps. §4 details the training process.

For initial deployment, Apparate evenly spaces the max
number of allowable ramps (based on the budget and GPU
resources) across the model. To avoid accuracy dips due to
discrepancies between training data and the current work-
load, each ramp begins with a threshold of 0, i.e., no exiting.
The updated model definition (with enabled ramps) is passed
to the serving platform which operates as normal, e.g., pro-
filing expected model runtimes for different batch sizes [22].

3.2 Accuracy-Aware Threshold Tuning
To avoid accuracy drops as workload characteristics change
over time, Apparate’s controller employs frequent and fast
tuning of thresholds for already-enabled ramps. The reason
is that threshold tuning for any set of ramps is sufficient to
ensure that user-specified accuracy constraints are not vio-
lated – at the extreme, all thresholds could be set to zero,
which precludes any early exiting. Altering only the set of
active ramps fails to provide this property.

To enable threshold tuning, as requests pass through a
model, Apparate’s controller continually records exiting in-
formation at each active ramp, as well as the final result that
the original model predicts. More precisely, for each ramp,
Apparate records the result (e.g., classification label) with
the lowest error rate, i.e., the highest-confidence result for
the ramp, even if the error exceeds the ramp’s threshold (pre-
cluding exiting). Importantly, since inputs always pass fully
through models with Apparate, this information is recorded
for all inputs at each active ramp, irrespective of upstream
exiting decisions. This is paramount since the information

6

Introduction Background Challenges Design Evaluation Conclusion

Threshold Tuning

Triggering: Threshold tuning is triggered any time a window’s accuracy falls
below the user-specified accuracy constraint.

Evaluation: Apparate identifies the earliest ramp whose top prediction now has
an error rate below its threshold and compare its result with the original model
output.

Greedy Search: Based on the fact that higher thresholds result in monotonic
decreases in accuracy and latency, Apparate designs a hill climbing algorithm to
decide the thresholds for active ramps.

Introduction Background Challenges Design Evaluation Conclusion

Greedy Search
Starting with thresholds of 0 for all active ramps, Apparate choose a direction
with largest additional latency saving per unit of additional accuracy loss.
Apparate follows a multiplicative increase, multiplicative decrease policy on
step size to balance search speed and granularity.

Figure 10: Threshold tuning example with two active ramps
for ResNet50 and a random video. Configurations within the
boundary have <1% accuracy loss; cell values list latency wins.
Arrows show the path taken by Apparate’s hill climbing algo-
rithm (without fine-grained step changes).

serves not only as a signal for when to tune thresholds, but
also provides guidance for how to do so.

Triggering tuning. Apparate maintains an average achieved
accuracy over the past 16 samples by comparing exiting re-
sults with the deployed configuration to results of the origi-
nal model. Threshold tuning is triggered any time a window’s
accuracy falls below the user-specified accuracy constraint.
The threshold tuning process (described below) runs asyn-
chronously on a CPU, without any disruptions to ongoing
jobs. This is possible since thresholds are anyway enforced
only by Apparate’s controller; GPUs are agnostic to thresh-
old values, and instead simply stream ramp results to the Ap-
parate controller which determines exiting decisions.

Evaluating threshold configurations. Threshold tuning re-
quires insight into how any alterations to active ramp thresh-
olds would affect overall model exiting behavior (and ac-
curacies). The aforementioned per-request, per-ramp moni-
toring information grants this visibility, enabling Apparate
to rapidly evaluate any threshold values across active ramps
without requiring additional inference, and while accounting
for inter-ramp dependencies. In particular, to evaluate new
threshold values, Apparate simply identifies the earliest ramp
whose top prediction now has an error rate below its thresh-
old. Comparing these results with those of the original model
indicates the achieved accuracy for the new configuration;
latency wins for these exit patterns are computed using the
one-time profiling data described in §3.3.

Greedy search. The goal of tuning is to identify a new set of
thresholds that maximize latency savings while adhering to
accuracy constraints for the last window of data. The chal-
lenge is that the space of thresholds to consider is massive,
precluding a grid search (especially given how frequently
adaptation is needed - §2.3). Indeed, even with discretized
threshold values in [0, 1] with a step size of S, computa-
tion costs are O(C× (1

S)
R), where R is the number of active

ramps, and C is the cost to evaluate a given configuration.

2 3 4
Num Ramps

101

102

103

104

Ru
nt

im
e

(m
s)

Greedy Search (ours)
Grid Search

(a) Threshold tuning speed.

2 3 4
Num Ramps

0

1

2

3

Pe
rfo

rm
an

ce
 D

iff
 (%

)

(b) Optimality of tuning results.
Figure 11: Apparate’s tuning vs. optimal tuning on runtime and
latency of selected configurations. Bars list medians across all
model-workload pairs, with error bars for min-max.

Instead, Apparate employs a greedy heuristic (Algo-
rithm 1 in §A) that leverages a fundamental property of EEs
when evaluated against an original model: higher thresholds
result in monotonic decreases in accuracy and monotonic in-
creases in latency savings. This prunes the space of threshold
values to consider by providing a clear boundary in the R-
dimensional space that separates configurations that are suf-
ficiently accurate from those that are not. Additionally, for
accurate configurations, maximum latency savings must fall
on that boundary. Figure 10 illustrates this.

These properties inform Apparate’s hill climbing strat-
egy [47] for threshold tuning. Starting with threshold values
of 0 for each active ramp, and a step size of 0.1, threshold
tuning runs in a series of (incremental) exploration rounds.
In each round, we increase the threshold of each ramp in
isolation (leaving the others unchanged), and evaluate the
achieved accuracy and latency savings as described above.
Apparate then chooses the single ramp threshold change that
delivered the largest additional latency savings per unit of ad-
ditional accuracy loss. This process repeats until no ramp’s
threshold can be increased without an accuracy violation.

To enhance this process, Apparate follows a multiplica-
tive increase, multiplicative decrease policy on step sizes to
balance search speed and granularity. Specifically, each time
a step increase results in an accuracy violation, Apparate
halves that ramp’s step size for subsequent rounds to hone
in on the boundary at fine granularity; step sizes are lower-
bounded at 0.01. Conversely, selection of a ramp for thresh-
old alteration suggests a potentially promising path of ex-
ploration; in this case, for a speedup, Apparate doubles that
ramp’s step size for the following round.

Overall, as shown in Figure 11, Apparate’s threshold tun-
ing algorithm runs up to 3 orders of magnitude faster than a
pure grid search (11.9ms vs. 3.0s on average). Note that these
results maximally parallelize grid search across a 30-core
machine. Further, selected threshold values achieve within
0-3.8% of the latency savings of the optimal configurations.

3.3 Latency-Focused Ramp Adjustments
The set of active ramps ultimately dictates where inputs can
exit, and thus provides bounds on potential latency savings.
Unlike threshold tuning which runs reactively (since accu-
racy is a constraint) and uses only recent profiling data to

7

Introduction Background Challenges Design Evaluation Conclusion

Ramp Adjustment

Apparate periodically adjusts the active ramps, which ultimately provides bounds
on potential latency savings.

Unlike threshold tuning which runs reactively, ramp adjustment runs periodically.
This is because threshold directly affects accuracy and must react promptly, while
ramp adjustment only affects latency and is pure optimization. In addition, ramp
adjustment requires deployments to evaluate the impact of new ramps.

Introduction Background Challenges Design Evaluation Conclusion

Removing Active Ramps

Apparate defines the utility of ramp R = savings− overheads, where savings
is the sum of raw latency that exiting inputs avoided by using R, and overheads

is the sum of raw latency that R added to inputs that did not exit.

If any negative utility values exist, Apparate applies a fast threshold tuning round
to see if ramp utilities become positive without harming overall latency savings.
If not, Apparate deactivates all negative-utility ramps.

Introduction Background Challenges Design Evaluation Conclusion

Adding New Ramps

Intuition: later ramps exhibit higher exit rates than earlier ones.

The upperbound exit rate is calculated as the sum of profiled exit rates for the
following deactivated ramp and any earlier deactivations.

evaluate new configurations, ramp adjustment is strictly an
optimization (for latency savings), and requires deployment
to evaluate the impact of any new ramp. Thus, Apparate’s
ramp tuning runs periodically (every 128 samples by default)
and conservatively alters the set of active ramps to incremen-
tally converge on high-performing configurations.
Evaluating active ramps. In each round, Apparate’s con-
troller starts by computing a utility score for each active ramp
that evaluates its overall impact on workload latency. To do
so, Apparate couples per-ramp exit rates (based on profil-
ing data from threshold tuning in §3.2) with two additional
inputs that are collected once per model during bootstrap-
ping: (1) the latency overhead per ramp, and (2) a layer-
wise breakdown of time spent during model inference (for
different batch sizes [22]). The latter is necessary since dif-
ferent models can exhibit wildly different latency character-
istics that govern the impact of any exits. For instance, la-
tency of CV models is often heavily skewed towards early
layers given the high dimensionality of the input data [40],
while NLP transformers exhibit more consistent latency val-
ues across coding blocks. Note that, in the case of distributed
serving, latency breakdowns are updated to account for net-
work delays between serving nodes.

Using these inputs, Apparate defines the utility of ramp R
as savings - overheads, where savings represents
the sum of raw latency that exiting inputs avoided by using
ramp R, and overheads is the sum of raw latency that R
added to inputs that it was unable to exit. A negative (posi-
tive) utility value means a ramp is causing more (less) harm
than benefit to overall latencies for the current workload.
Adding new ramps. If any negative utility values exist, Ap-
parate applies a fast threshold tuning round to see if ramp
utilities become entirely positive without harming overall la-
tency savings. If not, Apparate immediately deactivates all
negative-utility ramps. From there, the key question to ad-
dress is what ramps (if any) should be added to make use of
the freed ramp budget. The main difficulty is in predicting
the utility of each potential addition. Indeed, while per-exit
latency savings for each potential ramp are known (using the
latency breakdown from above), exit rates are not.

To cope with this uncertainty, our guiding intuition is that,
subject to the same accuracy constraint, later ramps almost
always exhibit higher exit rates than earlier ones.2 The rea-
son is that late ramps have the luxury of leveraging more of
an original model’s computations when making a prediction.
Importantly, this implies that a candidate ramp’s exit rate is
bound by the exit rate of the closest downstream ramp.

Building on this, Apparate’s controller computes an upper
bound on the utility of candidate ramps as follows. To avoid
inter-ramp dependencies harming ramps that are already per-

2For a single input, being able to exit at an early ramp does not guarantee
exit capabilities at later ramps [34]. However, later-ramp exit rates were
always higher than earlier ones for our workloads, and we note that Apparate
only uses this property for search efficiency, not correctness.

0 1 2 3 4 5 6 7 8 9 10 11
+ - -

Profiled Exit Rate
(Estimated Upper Bound) 5% 5% 15%10%20%

Higher Exit Rate

Higher Latency Savings

Figure 12: Computing upper-bound exit rates for candidate
ramps. Blue dots show previously active ramps (+/− indicates
positive/negative utility), while orange dots show candidates.

forming well, we only consider additions after the latest pos-
itive ramp P in the model. In particular, Apparate divides the
range following P into intervals separated by any negative
ramps deactivated in this round. The first round of candidate
ramps are those in the middle of each interval.

For each candidate ramp, we compute its upper-bound exit
rate as the sum of profiled exit rates for the following deacti-
vated ramp and any earlier deactivations (Figure 12); the idea
is that inputs from earlier deactivations would have reached
the following deactivated ramp and might have exited there.
Utility scores are then computed as above, and the ramp with
the highest positive utility score is selected for trial. If all
ramps have negative projected utilities, Apparate repeats this
process for later candidate ramps in each interval. Once a
ramp is selected for trial, Apparate adds it to the deployed
model definition, while removing deactivated ramps. Trialed
ramps start with threshold=0 to prevent inaccurate exiting,
but are soon updated in the next round of threshold tuning.

Until now, we have only discussed how Apparate handles
scenarios with at least one negative ramp utility. In the event
that all ramps exhibit positive utilities, Apparate enters a low-
risk probing phase to determine if latency savings can grow
by injecting (or shifting to) earlier ramps. There are two sce-
narios for this. If ramp budget remains, we add a ramp im-
mediately before the existing ramp with highest utility (while
keeping that ramp to preserve its exiting wins). In contrast,
if no ramp budget remains, we shift the ramp with the lowest
utility score one position earlier, leaving the most positive
ramp untouched. Additions are incorporated into the config-
uration using the same process as above.

4 IMPLEMENTATION

Apparate is implemented as a layer atop TensorFlow-
Serving [39] and Clockwork [22] (using PyTorch [7]) and
includes the components described in 3 written as Python
modules in ∼7500 lines of code. Although we chose these
platforms for our current implementation, we note that Ap-
parate is not limited to them and its techniques can be imple-
mented in any inference platform. Importantly, Apparate en-
tirely leverages the scheduling and queuing mechanisms of
the underlying framework. Original models are ingested in
the ONNX format [6] and compiled for performance. Ramp
training (during bootstrapping) uses the first 10% of each
dataset following a 1:9 split for training and validation; the
remaining 90% of each dataset is used for evaluation.

8

The ramp with the highest utility score is selected for trail.

Introduction Background Challenges Design Evaluation Conclusion

Evaluation

Introduction Background Challenges Design Evaluation Conclusion

Setup

▶ Models: 10 models across 4 families, covering CV and NLP.

▶ Workloads: CV workloads comprise real-time object classification on 8
one-hour videos. NLP workloads use Amazon product reviews and IMDB
movie reviews.

▶ Parameters: SLO is 2x of each model’s inference time with batch size 1.
Accuracy constraint is 1%. Ramp overhead budget is 2% impact on
worst-case latency.

▶ Hardware: Single machine with one NVIDIA A6000 and 32-core AMD CPU.

▶ Platforms: TensorFlow-Serving and Clockwork (using PyTorch).

Introduction Background Challenges Design Evaluation Conclusion

Comparison with Baselines

5 EVALUATION

We evaluated Apparate across a wide range of NLP and CV
workloads and serving platforms. Our key findings are:

• Apparate lowers 25th percentile and median latencies by
40.5-91.5% and 70.2-94.2% for CV, and 16.0-37.3% and
10.0-24.2% for NLP workloads, compared to original
(non-EE) models.

• Unlike existing EE models that unacceptably worsen ac-
curacies and tail latencies by up to 23.9% and 11.0%, Ap-
parate consistently meets specified accuracy and tail la-
tency constraints.

• Apparate automatically generalizes to different model ar-
chitectures (e.g., compressed) and EE configurations (e.g.,
ramp style), and its wins gracefully shrink as accuracy or
tail-latency constraints grow.

5.1 Methodology

Models. We consider 10 models (across 4 families) that
cover popular architectures and a variety of model sizes in
both CV and NLP. For CV, we use the ResNet{18, 50, 101}
residual models, as well VGG{11, 13, 16} models that fol-
low a chained (linear) design. All of these models are pre-
trained on ImageNet and from the PyTorch Model Zoo [43];
we further fine-tune the models to our video scenes using
a random sampling of 10% of frames across our dataset.
For NLP, we consider 3 encoder-only transformers from the
BERT family – BERT-base, BERT-large, and Distilbert [45]
(a variant of BERT-base that was compressed via distilla-
tion) – as well as a decoder-only large language model:
GPT2-medium. These models span 66-345 million param-
eters, were collected from HuggingFace [30], and were pre-
trained (without more fine-tuning) on Yelp reviews [8] that
are separate from any evaluation dataset we use.

Workloads. CV workloads comprise real-time object clas-
sification (people, cars) on 8 one-hour videos used in recent
video analytics literature [11, 27]. The videos were sampled
at 30 frames per second, and collectively span day/night from
diverse urban scenes; for each, we perform classification.

NLP workloads focus on sentiment analysis using two
datasets: Amazon product reviews [10] and IMDB movie re-
views [41]. To the best of our knowledge, there do not ex-
ist public streaming workloads for NLP classification, so we
convert these datasets into streaming workloads as follows.
For Amazon, we follow the order of product categories in the
original dataset, but within each category, we keep reviews
only from frequent users (i.e., those with >1k reviews) and
order streaming by user (250k requests in total). For IMDB,
we follow the order of reviews in the original dataset, but
stream each in sentence by sentence (180k requests in to-
tal). We then define arrival patterns for these ordered re-
quests by using the Microsoft Azure Functions (MAF) as in
prior serving work [22]. Specifically, to ensure meaningful
and realistic workloads despite the high degree of variation

ResNet18 ResNet50ResNet101 VGG11 VGG13 VGG16
0

20
40
60
80

M
ed

. L
at

en
cy

 W
in

s
vs

. V
an

illa
 (%

)

Apparate Optimal

Figure 13: Median latency savings compared to vanilla models.
Bars show median workload with error bars for min-max.

in runtime across our models, we paired each model with
a randomly selected trace snippet from the set that met the
following criteria: (1) number of requests match that in our
largest dataset, and (2) queries per second should not result
in >20% dropped requests with vanilla serving for the given
model and selected SLO (described next).
Parameter configurations. Given our focus on interactiv-
ity, we cope with heterogeneity in model runtimes by setting
SLOs to be 2× each model’s inference time with batch size
1 in our main experiments. This results in SLOs between
13-204 ms, which match the ranges considered in prior
work [22, 40, 49]; Table 5 in §A lists the specific SLO val-
ues per model, and we study the effect of SLO on Apparate
in §5.4. Unless otherwise noted, results use 1% for Appa-
rate’s accuracy constraint (in line with industry reports [42])
and a ramp budget of 2% impact on worst-case latency; we
consider other values for both parameters in §5.4.
Setup. Experiments were conducted on a dedicated server
with one NVIDIA RTX A6000 housing 48GB of mem-
ory, one AMD EPYC 7543P 32-Core CPU, and 256GB
DDR4 RAM. We run experiments with two serving plat-
forms: TensorFlow-Serving [39] and Clockwork [22]. We
primarily present results with Clockwork due to space con-
straints, but note that report trends hold for both platforms;
we compare cross-platform results in §5.4.
Metrics and baselines. Our main metrics of evaluation are
classification accuracy and per-request latencies. Accuracy
is defined as the percentage of inputs that are assigned the
correct label as defined by each original (i.e., non-EE) model.
Per-request latency is measured as the time between when a
request arrives at a serving platform, and when its response
is released by the platform. We mainly compare Apparate
with two baselines: (1) original models without EEs (vanilla)
running in serving platforms, and (2) optimal EEs as defined
in §2.2, i.e., assuming all inputs exit at their earliest possible
ramps with non-exiting inputs incurring no ramp overheads.
We compare Apparate to existing EE strategies in §5.3.

5.2 Overall Results
Figures 13- 16 compare Apparate with vanilla model serving
and optimal exiting across our workloads. Overall, Apparate
significantly lowers latencies compared to serving vanilla
models, while always adhering to the imposed 1% accu-
racy constraint. For instance, median speedups range from

9

ResNet18 ResNet50ResNet101 VGG11 VGG13 VGG16
0

10

20

30

P9
5

La
te

nc
y

(m
s)

Apparate Vanilla

Figure 14: Evaluating Apparate’s impact on tail latency (run-
ning with 2% budget) compared to vanilla serving. Bars show
median workload, with error bars spanning min-max.

40.5-91.5% (2.7-30.5 ms) for CV workloads, and jump to
70.2-94.2% (5.2-31.4 ms) at the 25th percentiles. NLP work-
loads follow a similar pattern, with median and 25th per-
centile savings ranging from 10.0-24.2% (3.9-25.3 ms) and
16.0-37.3% (4.8-53.2 ms), respectively. Importantly, across
all workloads, Apparate’s tail latency (and thus impact on
throughput) always falls within its granted budget (2% here)
and is most often negligible (Figure 14).

Beyond this, there are several important trends to note.
First, Apparate’s raw latency savings grow with increased
model sizes, e.g., 25th percentile wins of 53.2ms, 28.4ms,
14.3ms, 5.5ms for GPT-2, BERT-large, BERT-base, and
Distilbert-base on the Amazon dataset. This is because only
the results exit models with Apparate, with inputs running to
completion; thus, latency savings pertain entirely to serving
times (not queuing delays), with exit impact being higher as
model size (and thus, runtime) grows. Relative (%) latency
savings follow the same pattern for CV workloads, e.g., Ap-
parate’s median wins grow by 13.8% and 5.3% moving from
the smallest to the biggest models in the ResNet and VGG
families. However, relative wins remain relatively stable in
NLP models, e.g., 15.8% and 13.7% for GPT2 and BERT-
large on Amazon Reviews. The reason for this difference is
in the effectiveness of the models in each domain. Results
and task performance are largely similar across the consid-
ered CV models, enabling Apparate to inject ramps early in
(even larger) models. In contrast, results and task efficacy are
far better with the larger models in NLP; thus, Apparate’s
ramps fall in similar (relative) positions across the models.

Second, Apparate’s wins are larger for CV workloads than
NLP workloads for two reasons. As previously noted, CV
workloads use lighter models and lower request rates (bound
by video fps), and thus incur far lower queuing delays. More
importantly, in contrast to CV where spatiotemporal simi-
larities across frames (and thus, requests) are high due to
physical constraints of object motion in a scene, NLP re-
quests exhibit less continuity, e.g., back-to-back reviews are
not constrained in semantic similarity. The effects on Appa-
rate’s adaptation of EE configurations are that (1) past data
is less representative of future data, and (2) the duration until
subsequent adaptation is shorter.

Lastly, Apparate’s wins for NLP are consistently higher

with the Amazon dataset versus the IMDB dataset. The rea-
son is that the IMDB dataset exhibits ‘harder’ inputs that re-
quire later-ramp exits. For instance, for GPT-2, average exit
locations for the offline optimal exit strategy are at layers 2.2
and 2.7 for Amazon and IMDB, respectively; these numbers
are 2.1 and 2.5 for BERT-base.

Comparisons with optimal. As shown in Figure 13, latency
savings with Apparate for CV workloads largely mirror those
of the optimal that tunes exiting decisions based on perfect
knowledge of the upcoming workload, e.g., median savings
are within 20.5% of the optimal. In contrast, building on the
discussion above, the limited continuity across inputs in NLP
workloads leads to a wider gap of 73.1-83.2% at the median
(Figure 16). To further characterize Apparate’s performance
on these workloads, we also consider a more realistic online
optimal algorithm that relaxes the following elements. First,
rather than per-sample adaptation of thresholds and ramps,
ramp adjustments are set to operate only as fast as model
definitions in the GPU can be updated. Second, rather than
using perfect knowledge of upcoming inputs, decisions are
made using only recent (historical) data; for each threshold
or ramp adaptation decision, we tune based on the past {20,
40, 80} batches of inputs and select the decision that per-
forms best on the upcoming data. As shown in Figure 16,
Apparate’s median latency savings are within 16.9-52.1% of
this (more) realistic optimal exiting strategy.

Varying SLOs. SLOs affect serving system batching and
queuing decisions, and thus Apparate’s benefits. To study
this effect, we considered SLOs for each model that were
2× and 4× those in our default experiments (Table 5). Gen-
erally, higher SLOs induce larger serving batch sizes and
higher per-request queuing delays (as inputs wait for the
previous, slower inference batch to complete); this damp-
ens Apparate’s relative latency savings which target model
runtimes, but not queuing delays. Figure 17 illustrates this
effect. For instance, median latency savings for GPT-2 drop
from 16.3% to 6.8% as SLO grows by 4×. Note that, to illus-
trate this trend for CV workloads, we upsampled each video
to 120 fps. The reason is that our serving platforms are work-
conserving and, at 30 fps, they are able to consistently sched-
ule jobs with batch size 1 and low queuing delays given the
low runtimes of the considered CV models.

5.3 Comparison with Existing EE Strategies
We compare Apparate with two off-the-shelf EE models:
BranchyNet [53] and DeeBERT [57]. BranchyNet extends
ResNet models with ramps of the same style as Apparate,
while DeeBERT extends BERT-base with deeper ramps (us-
ing the entire BERT pooler, as described in §3.1). For each,
we follow their prescribed architectures, with ramps after ev-
ery layer that are always active. We perform one-time tuning
of thresholds as recommended by both works, and consider
two variants: the default recommendation where all ramps
must use the same threshold, and a more flexible version

10

Introduction Background Challenges Design Evaluation Conclusion

Comparison with Existing EE Strategies

Existing EE approaches yield unacceptable accuracy drops while having longer
tail latencies as compared to Apparate.

(a) GPT2 (b) BERT-large (c) BERT-base (d) Distilbert-base

Figure 15: Apparate (with 2% budget) vs. vanilla models on NLP workloads. “-V” indicates serving using the vanilla model. Note
that “-V” curves per plot mostly overlap since they use the same timing trace and no exiting; minor discrepancies are only due to the
varying number of inputs across workloads.

GPT2 BERT-base
0

25

50

75

100

M
ed

. L
at

en
cy

 W
in

s
vs

. V
an

illa
 (%

)

15.8
24.1

33 29

94.3 89.5

Apparate Online Opt. Offline Opt.

Figure 16: Apparate vs. optimal exiting on NLP workloads with
the Amazon dataset.

Low Med High
SLO

0
20
40
60
80

M
ed

. L
at

en
cy

 W
in

s
vs

. V
an

illa
 (%

) ResNet50
VGG13

(a) CV

Low Med High
SLO

0

5

10

15

M
ed

. L
at

en
cy

 W
in

s
vs

. V
an

illa
 (%

) BERT-base
GPT2-medium

(b) NLP
Figure 17: Impact of SLOs on Apparate’s wins.

that removes this restriction (+). For both, threshold tuning is
done optimally (via grid search), and is based on uniformly
sampled data across the workload. For fair comparison, Ap-
parate’s ramp budget is configured to support ramps at all
layers (though it never does so).

Table 2 presents our results. The main takeaway is that ex-
isting EE approaches, even when favorably tuned, yield un-
acceptable drops in average accuracy up to 23.9% and 17.8%
for CV and NLP. In contrast, Apparate consistently meets the
imposed accuracy constraint (1% in this experiment) for both
workloads. Further, even with such accuracy violations, tail
latencies are 0.9-9.4% lower with Apparate than with these
systems. The reason is again lack of adaptation: all ramps
are always active despite their current efficacy which vary
dramatically over time (§2.3), yielding undue overheads for
large numbers of non-exiting inputs. In contrast, throughout
these experiments, despite having a full ramp budget, Appa-
rate maintained only 9.1-27.2% of all possible ramps.

For fair median latency comparison, we consider an
optimally-tuned (opt) version of existing EE models that
perform one-time tuning on the actual test dataset, picking
the best (latency-wise) thresholds that ensure <1% accuracy
drop. As shown, due to its regular and less-constrained adap-
tation, Apparate outperforms even this oracle version of ex-
isting EEs with up to 14.1% higher median latency savings.

Avg Acc Median Wins P95 Wins
Apparate (ResNet50) 99.0-99.2% 40.9-88.6% -1.6-0.0%

BranchyNet 85.8-99.8% -11.0-88.3% -11.0%
BranchyNet+ 76.1-99.9% -11.0-88.3% -11.0%

BranchyNet-opt 99.0-99.7% -11.0-74.5% -11.0%
Apparate (BERT-base) 99.1-99.3% 9.1-24.1% 0.7-1.8%

DeeBERT 91.7-97.1% 13.2-36.1% -1.3-6.4%
DeeBERT+ 82.2-90.3% 31.7-36.1% 5.9-6.4%

DeeBERT-opt 99.0% 9.8-36.1% -1.4-6.4%
Table 2: Comparison with existing EE models. Results list
ranges of accuracies or latency wins across all CV (top row)
or NLP (bottom row) workloads. ‘+’ and ‘opt’ pertain to opti-
mized tuning strategies described in §5.3.

1 2 5
Accuracy Target (%)

20

40

60

M
ed

ia
n

La
te

nc
y

Sa
vi

ng
s (

%
)

(a) ResNet50

1 2 5
Accuracy Target (%)

20

40

60

M
ed

ia
n

La
te

nc
y

Sa
vi

ng
s (

%
)

(b) GPT2
Figure 18: Apparate’s wins for different accuracy constraints.

5.4 Microbenchmarks

To ease presentation, results in this section use representative
CV and NLP models (ResNet50, GPT2-medium) running on
a random corpus video and Amazon reviews, respectively.
All reported trends hold for all considered workloads.

Parameter sensitivity. Recall that Apparate ingests values
for two key parameters: ramp aggression (i.e., a ramp bud-
get) and accuracy constraint (i.e., acceptable accuracy loss).
Fig. 18 and Tab. 3 studies the effect that these parameters
have on Apparate’s latency wins. The findings are intuitive:
Apparate’s latency savings over vanilla models decrease as
ramp budgets shrink or accuracy constraints tighten. Both
trends are a result of Apparate being granted less flexibility
for adaptation, either via smaller acceptable threshold ranges
(that meet accuracy targets), or active ramp capacity (and
thus potential ramp configurations). Importantly, accuracy
constraint has a larger impact on Apparate’s wins. The rea-
son is that inter-ramp dependencies result in overlap in the
set of inputs that can exit at any ramp when run in isolation;
thus, wins from using more ramps eventually hits diminish-
ing returns. Indeed, Apparate begins by using the full budget,

11

Introduction Background Challenges Design Evaluation Conclusion

Microbenchmarks - Parameter Sensitivity

(a) GPT2 (b) BERT-large (c) BERT-base (d) Distilbert-base

Figure 15: Apparate (with 2% budget) vs. vanilla models on NLP workloads. “-V” indicates serving using the vanilla model. Note
that “-V” curves per plot mostly overlap since they use the same timing trace and no exiting; minor discrepancies are only due to the
varying number of inputs across workloads.

GPT2 BERT-base
0

25

50

75

100

M
ed

. L
at

en
cy

 W
in

s
vs

. V
an

illa
 (%

)

15.8
24.1

33 29

94.3 89.5

Apparate Online Opt. Offline Opt.

Figure 16: Apparate vs. optimal exiting on NLP workloads with
the Amazon dataset.

Low Med High
SLO

0
20
40
60
80

M
ed

. L
at

en
cy

 W
in

s
vs

. V
an

illa
 (%

) ResNet50
VGG13

(a) CV

Low Med High
SLO

0

5

10

15

M
ed

. L
at

en
cy

 W
in

s
vs

. V
an

illa
 (%

) BERT-base
GPT2-medium

(b) NLP
Figure 17: Impact of SLOs on Apparate’s wins.

that removes this restriction (+). For both, threshold tuning is
done optimally (via grid search), and is based on uniformly
sampled data across the workload. For fair comparison, Ap-
parate’s ramp budget is configured to support ramps at all
layers (though it never does so).

Table 2 presents our results. The main takeaway is that ex-
isting EE approaches, even when favorably tuned, yield un-
acceptable drops in average accuracy up to 23.9% and 17.8%
for CV and NLP. In contrast, Apparate consistently meets the
imposed accuracy constraint (1% in this experiment) for both
workloads. Further, even with such accuracy violations, tail
latencies are 0.9-9.4% lower with Apparate than with these
systems. The reason is again lack of adaptation: all ramps
are always active despite their current efficacy which vary
dramatically over time (§2.3), yielding undue overheads for
large numbers of non-exiting inputs. In contrast, throughout
these experiments, despite having a full ramp budget, Appa-
rate maintained only 9.1-27.2% of all possible ramps.

For fair median latency comparison, we consider an
optimally-tuned (opt) version of existing EE models that
perform one-time tuning on the actual test dataset, picking
the best (latency-wise) thresholds that ensure <1% accuracy
drop. As shown, due to its regular and less-constrained adap-
tation, Apparate outperforms even this oracle version of ex-
isting EEs with up to 14.1% higher median latency savings.

Avg Acc Median Wins P95 Wins
Apparate (ResNet50) 99.0-99.2% 40.9-88.6% -1.6-0.0%

BranchyNet 85.8-99.8% -11.0-88.3% -11.0%
BranchyNet+ 76.1-99.9% -11.0-88.3% -11.0%

BranchyNet-opt 99.0-99.7% -11.0-74.5% -11.0%
Apparate (BERT-base) 99.1-99.3% 9.1-24.1% 0.7-1.8%

DeeBERT 91.7-97.1% 13.2-36.1% -1.3-6.4%
DeeBERT+ 82.2-90.3% 31.7-36.1% 5.9-6.4%

DeeBERT-opt 99.0% 9.8-36.1% -1.4-6.4%
Table 2: Comparison with existing EE models. Results list
ranges of accuracies or latency wins across all CV (top row)
or NLP (bottom row) workloads. ‘+’ and ‘opt’ pertain to opti-
mized tuning strategies described in §5.3.

1 2 5
Accuracy Target (%)

20

40

60

M
ed

ia
n

La
te

nc
y

Sa
vi

ng
s (

%
)

(a) ResNet50

1 2 5
Accuracy Target (%)

20

40

60

M
ed

ia
n

La
te

nc
y

Sa
vi

ng
s (

%
)

(b) GPT2
Figure 18: Apparate’s wins for different accuracy constraints.

5.4 Microbenchmarks

To ease presentation, results in this section use representative
CV and NLP models (ResNet50, GPT2-medium) running on
a random corpus video and Amazon reviews, respectively.
All reported trends hold for all considered workloads.

Parameter sensitivity. Recall that Apparate ingests values
for two key parameters: ramp aggression (i.e., a ramp bud-
get) and accuracy constraint (i.e., acceptable accuracy loss).
Fig. 18 and Tab. 3 studies the effect that these parameters
have on Apparate’s latency wins. The findings are intuitive:
Apparate’s latency savings over vanilla models decrease as
ramp budgets shrink or accuracy constraints tighten. Both
trends are a result of Apparate being granted less flexibility
for adaptation, either via smaller acceptable threshold ranges
(that meet accuracy targets), or active ramp capacity (and
thus potential ramp configurations). Importantly, accuracy
constraint has a larger impact on Apparate’s wins. The rea-
son is that inter-ramp dependencies result in overlap in the
set of inputs that can exit at any ramp when run in isolation;
thus, wins from using more ramps eventually hits diminish-
ing returns. Indeed, Apparate begins by using the full budget,

11

Ramp Budget ResNet50 GPT2
2% 48.9% 18.5%
5% 49.6% 22.2%
10% 50.4% 24.9%

Table 3: Apparate’s median latency wins vs. ramp budget.

System\Workload ResNet50 GPT2
Clockwork (20.2, 37.8) (689.2, 779.4)
TF-Serve (24.5, 37.8) (709.3, 793.1)

Table 4: Apparate on different serving platforms. Results show
(median, p95) latency over vanilla models in ms.

only to quickly disable many ramps that have a net negative
effect on serving latencies.

Ramp architectures. Although Apparate opts for using
many lightweight ramps, it’s adaptation algorithms can sup-
port any ramp architecture. To illustrate this, we ran Ap-
parate with DeeBERT’s more expensive ramps (described
above). Overall, on the Amazon Reviews dataset, we find
that these costlier ramps dampen Apparate’s latency savings
by 4% since they constrain Apparate’s runtime adaptation in
terms of feasible configurations, i.e., fewer active ramps at
any time. Crucially, we note that accuracy constraints were
still entirely met due to Apparate’s frequent threshold tuning.

Impact of serving platform. Apparate runs atop existing
serving platforms, responding to overall serving (and ex-
iting patterns) rather than altering platform decisions, e.g.,
for queuing. Table 4 shows that, despite the discrepancies in
platform scheduling strategies and knobs, Apparate’s perfor-
mance wins are largely insensitive to the underlying platform
when CV or NLP workloads are configured with the same
SLO goal. For example, Apparate’s median latency savings
for the Amazon workload and GPT-2 are within 2.9% when
using Clockwork or TensorFlow-Serving.

Profiling Apparate. Figure 11 in §3.2 analyzes the runtime
and optimality of Apparate’s threshold tuning algorithm. Be-
yond that, Apparate includes two other overheads while run-
ning: ramp adjustment and coordination between its CPU
controller and serving GPUs. Ramp adjustment rounds take
an average of 0.5 ms. Coordination overheads are also low
because of Apparate’s small ramp sizes (definitions and
weights consume only ∼10KB) and profiling data (simply
a top-predicted result with an error score, collectively con-
suming around ∼1KB). Thus, CPU-GPU coordination de-
lays take an average of 0.5ms per communication, 0.4ms of
which comes from fixed PCIe latencies in our setup.

Importance of Apparate’s techniques. Apparate’s runtime
adaptation considers frequent (accuracy-guided) threshold
tuning, with periodic ramp adjustments. Table 2 highlights
the importance of threshold tuning on average accuracies.
Here, we evaluate the importance of ramp adjustment on Ap-
parate’s latency improvements by comparing versions with
and without this optimization. Overall, disabling ramp ad-
justment results in 20.8-33.4% lower median latency wins,

though worst-case latency (and throughput) and accuracy
constraints remain continually met.

6 ADDITIONAL RELATED WORK

A number of model-serving systems have been proposed [4,
5,7,17,22,39,44,49] where the focus is on serving large vol-
umes of inference requests within a pre-defined SLO. Exist-
ing systems favor maximizing the system throughput while
adhering to the latency constraints (2) by the use of intelli-
gent placement [22,49], batching [4] and routing [44]. To the
best of our knowledge, no existing serving proposals focus
on alleviating the latency-throughput tension.

The ML community has been actively working on early-
exit networks, with several proposals focusing on the EE’s
ramp architecture and exit strategy [28,36,46,53,57,58,64].
The architecture of the ramp depends on the domain, but it
typically consists of one or more layers that provide infor-
mation necessary to make an exit decision by emulating the
original model. Replicating the last (few) layers is the com-
mon [57, 58], Apparate builds on this approach and prefers
shallow ramps in its workflow (3). Once a ramp architecture
is chosen, the exit strategy could be based on confidence of
the labels [36] or entropy of the prediction [57]. More so-
phisticated approaches exist, e.g., instead of considering the
ramps as fully independent, [64] uses counter-based exiting.
Apparate’s focus is on leveraging EEs to resolve the latency-
throughput tension in serving systems with a design that gen-
eralizes to a large class of EE architectures.

Optimizing model serving objectives based on workload
characteristics has been discussed in recent works [15, 16,
21, 44, 49, 62, 63]. Inferline [16] optimizes cost in serv-
ing pipelines of models while adhering to strict latency
constraints using intelligent provisioning and management.
Shepherd [63] maximizes goodput and resource utilization
in highly unpredictable workloads. Despite their impressive
results, these works still optimize their metric of choice at the
expense of latency and do not resolve the latency-throughput
tension, which is the focus of our (complementary) work.

A recent line of work has focused on creating variants
of an ML model to optimize serving performance. Some of
these works look at execution graph level optimizations such
as quantization and fusing to reduce inference latency [1, 3],
while others replace the model with an equivalent one that
meets the provided constraints. Solutions like Mystify [23]
and INFaaS [44] generates and chooses model variants based
on their intent and constraints (including performance). As
shown in §5.2, Apparate’s wins persist even on compressed
models, and is thus complementary to these works in that
it can operate on their outputs. Finally, optimizing the ex-
ecution of dynamic neural networks that alter NN execu-
tion (e.g., EEs, mixture of experts) was proposed in [18, 61].
These are low-level optimizations (e.g., at the GPU) which
can benefit Apparate and improve its performance.

12

Introduction Background Challenges Design Evaluation Conclusion

Microbenchmarks - Ramp Architectures

When using DeeBERT’s more expensive ramps, Apparate performs 4% worse
since the costlier ramps constrain Apparate’s runtime adaptation, i.e., fewer
active ramps at a time.

Introduction Background Challenges Design Evaluation Conclusion

Microbenchmarks - Impact of Serving Platform

The (median, p95) latency over vanilla models are similar on the two platforms.

Ramp Budget ResNet50 GPT2
2% 48.9% 18.5%
5% 49.6% 22.2%
10% 50.4% 24.9%

Table 3: Apparate’s median latency wins vs. ramp budget.

System\Workload ResNet50 GPT2
Clockwork (20.2, 37.8) (689.2, 779.4)
TF-Serve (24.5, 37.8) (709.3, 793.1)

Table 4: Apparate on different serving platforms. Results show
(median, p95) latency over vanilla models in ms.

only to quickly disable many ramps that have a net negative
effect on serving latencies.

Ramp architectures. Although Apparate opts for using
many lightweight ramps, it’s adaptation algorithms can sup-
port any ramp architecture. To illustrate this, we ran Ap-
parate with DeeBERT’s more expensive ramps (described
above). Overall, on the Amazon Reviews dataset, we find
that these costlier ramps dampen Apparate’s latency savings
by 4% since they constrain Apparate’s runtime adaptation in
terms of feasible configurations, i.e., fewer active ramps at
any time. Crucially, we note that accuracy constraints were
still entirely met due to Apparate’s frequent threshold tuning.

Impact of serving platform. Apparate runs atop existing
serving platforms, responding to overall serving (and ex-
iting patterns) rather than altering platform decisions, e.g.,
for queuing. Table 4 shows that, despite the discrepancies in
platform scheduling strategies and knobs, Apparate’s perfor-
mance wins are largely insensitive to the underlying platform
when CV or NLP workloads are configured with the same
SLO goal. For example, Apparate’s median latency savings
for the Amazon workload and GPT-2 are within 2.9% when
using Clockwork or TensorFlow-Serving.

Profiling Apparate. Figure 11 in §3.2 analyzes the runtime
and optimality of Apparate’s threshold tuning algorithm. Be-
yond that, Apparate includes two other overheads while run-
ning: ramp adjustment and coordination between its CPU
controller and serving GPUs. Ramp adjustment rounds take
an average of 0.5 ms. Coordination overheads are also low
because of Apparate’s small ramp sizes (definitions and
weights consume only ∼10KB) and profiling data (simply
a top-predicted result with an error score, collectively con-
suming around ∼1KB). Thus, CPU-GPU coordination de-
lays take an average of 0.5ms per communication, 0.4ms of
which comes from fixed PCIe latencies in our setup.

Importance of Apparate’s techniques. Apparate’s runtime
adaptation considers frequent (accuracy-guided) threshold
tuning, with periodic ramp adjustments. Table 2 highlights
the importance of threshold tuning on average accuracies.
Here, we evaluate the importance of ramp adjustment on Ap-
parate’s latency improvements by comparing versions with
and without this optimization. Overall, disabling ramp ad-
justment results in 20.8-33.4% lower median latency wins,

though worst-case latency (and throughput) and accuracy
constraints remain continually met.

6 ADDITIONAL RELATED WORK

A number of model-serving systems have been proposed [4,
5,7,17,22,39,44,49] where the focus is on serving large vol-
umes of inference requests within a pre-defined SLO. Exist-
ing systems favor maximizing the system throughput while
adhering to the latency constraints (2) by the use of intelli-
gent placement [22,49], batching [4] and routing [44]. To the
best of our knowledge, no existing serving proposals focus
on alleviating the latency-throughput tension.

The ML community has been actively working on early-
exit networks, with several proposals focusing on the EE’s
ramp architecture and exit strategy [28,36,46,53,57,58,64].
The architecture of the ramp depends on the domain, but it
typically consists of one or more layers that provide infor-
mation necessary to make an exit decision by emulating the
original model. Replicating the last (few) layers is the com-
mon [57, 58], Apparate builds on this approach and prefers
shallow ramps in its workflow (3). Once a ramp architecture
is chosen, the exit strategy could be based on confidence of
the labels [36] or entropy of the prediction [57]. More so-
phisticated approaches exist, e.g., instead of considering the
ramps as fully independent, [64] uses counter-based exiting.
Apparate’s focus is on leveraging EEs to resolve the latency-
throughput tension in serving systems with a design that gen-
eralizes to a large class of EE architectures.

Optimizing model serving objectives based on workload
characteristics has been discussed in recent works [15, 16,
21, 44, 49, 62, 63]. Inferline [16] optimizes cost in serv-
ing pipelines of models while adhering to strict latency
constraints using intelligent provisioning and management.
Shepherd [63] maximizes goodput and resource utilization
in highly unpredictable workloads. Despite their impressive
results, these works still optimize their metric of choice at the
expense of latency and do not resolve the latency-throughput
tension, which is the focus of our (complementary) work.

A recent line of work has focused on creating variants
of an ML model to optimize serving performance. Some of
these works look at execution graph level optimizations such
as quantization and fusing to reduce inference latency [1, 3],
while others replace the model with an equivalent one that
meets the provided constraints. Solutions like Mystify [23]
and INFaaS [44] generates and chooses model variants based
on their intent and constraints (including performance). As
shown in §5.2, Apparate’s wins persist even on compressed
models, and is thus complementary to these works in that
it can operate on their outputs. Finally, optimizing the ex-
ecution of dynamic neural networks that alter NN execu-
tion (e.g., EEs, mixture of experts) was proposed in [18, 61].
These are low-level optimizations (e.g., at the GPU) which
can benefit Apparate and improve its performance.

12

Introduction Background Challenges Design Evaluation Conclusion

Microbenchmarks - Profiling Apparate

Ramp adjustment rounds take 0.5ms. Additional CPU-GPU communication take
0.5ms, where 0.4ms comes from PCIe latencies.

Figure 10: Threshold tuning example with two active ramps
for ResNet50 and a random video. Configurations within the
boundary have <1% accuracy loss; cell values list latency wins.
Arrows show the path taken by Apparate’s hill climbing algo-
rithm (without fine-grained step changes).

serves not only as a signal for when to tune thresholds, but
also provides guidance for how to do so.

Triggering tuning. Apparate maintains an average achieved
accuracy over the past 16 samples by comparing exiting re-
sults with the deployed configuration to results of the origi-
nal model. Threshold tuning is triggered any time a window’s
accuracy falls below the user-specified accuracy constraint.
The threshold tuning process (described below) runs asyn-
chronously on a CPU, without any disruptions to ongoing
jobs. This is possible since thresholds are anyway enforced
only by Apparate’s controller; GPUs are agnostic to thresh-
old values, and instead simply stream ramp results to the Ap-
parate controller which determines exiting decisions.

Evaluating threshold configurations. Threshold tuning re-
quires insight into how any alterations to active ramp thresh-
olds would affect overall model exiting behavior (and ac-
curacies). The aforementioned per-request, per-ramp moni-
toring information grants this visibility, enabling Apparate
to rapidly evaluate any threshold values across active ramps
without requiring additional inference, and while accounting
for inter-ramp dependencies. In particular, to evaluate new
threshold values, Apparate simply identifies the earliest ramp
whose top prediction now has an error rate below its thresh-
old. Comparing these results with those of the original model
indicates the achieved accuracy for the new configuration;
latency wins for these exit patterns are computed using the
one-time profiling data described in §3.3.

Greedy search. The goal of tuning is to identify a new set of
thresholds that maximize latency savings while adhering to
accuracy constraints for the last window of data. The chal-
lenge is that the space of thresholds to consider is massive,
precluding a grid search (especially given how frequently
adaptation is needed - §2.3). Indeed, even with discretized
threshold values in [0, 1] with a step size of S, computa-
tion costs are O(C× (1

S)
R), where R is the number of active

ramps, and C is the cost to evaluate a given configuration.

2 3 4
Num Ramps

101

102

103

104

Ru
nt

im
e

(m
s)

Greedy Search (ours)
Grid Search

(a) Threshold tuning speed.

2 3 4
Num Ramps

0

1

2

3

Pe
rfo

rm
an

ce
 D

iff
 (%

)

(b) Optimality of tuning results.
Figure 11: Apparate’s tuning vs. optimal tuning on runtime and
latency of selected configurations. Bars list medians across all
model-workload pairs, with error bars for min-max.

Instead, Apparate employs a greedy heuristic (Algo-
rithm 1 in §A) that leverages a fundamental property of EEs
when evaluated against an original model: higher thresholds
result in monotonic decreases in accuracy and monotonic in-
creases in latency savings. This prunes the space of threshold
values to consider by providing a clear boundary in the R-
dimensional space that separates configurations that are suf-
ficiently accurate from those that are not. Additionally, for
accurate configurations, maximum latency savings must fall
on that boundary. Figure 10 illustrates this.

These properties inform Apparate’s hill climbing strat-
egy [47] for threshold tuning. Starting with threshold values
of 0 for each active ramp, and a step size of 0.1, threshold
tuning runs in a series of (incremental) exploration rounds.
In each round, we increase the threshold of each ramp in
isolation (leaving the others unchanged), and evaluate the
achieved accuracy and latency savings as described above.
Apparate then chooses the single ramp threshold change that
delivered the largest additional latency savings per unit of ad-
ditional accuracy loss. This process repeats until no ramp’s
threshold can be increased without an accuracy violation.

To enhance this process, Apparate follows a multiplica-
tive increase, multiplicative decrease policy on step sizes to
balance search speed and granularity. Specifically, each time
a step increase results in an accuracy violation, Apparate
halves that ramp’s step size for subsequent rounds to hone
in on the boundary at fine granularity; step sizes are lower-
bounded at 0.01. Conversely, selection of a ramp for thresh-
old alteration suggests a potentially promising path of ex-
ploration; in this case, for a speedup, Apparate doubles that
ramp’s step size for the following round.

Overall, as shown in Figure 11, Apparate’s threshold tun-
ing algorithm runs up to 3 orders of magnitude faster than a
pure grid search (11.9ms vs. 3.0s on average). Note that these
results maximally parallelize grid search across a 30-core
machine. Further, selected threshold values achieve within
0-3.8% of the latency savings of the optimal configurations.

3.3 Latency-Focused Ramp Adjustments
The set of active ramps ultimately dictates where inputs can
exit, and thus provides bounds on potential latency savings.
Unlike threshold tuning which runs reactively (since accu-
racy is a constraint) and uses only recent profiling data to

7

Introduction Background Challenges Design Evaluation Conclusion

Microbenchmarks - Ablation Study

Disabling ramp adjustment results in 20.8-33.4% lower median latency wins.

Introduction Background Challenges Design Evaluation Conclusion

Conclusion

Introduction Background Challenges Design Evaluation Conclusion

Conclusion

Strength:

▶ Coherent design around a novel idea (running EE models to completion).

▶ Automatic and non-intrusive system (no modification on model definition
and serving platform).

Limitation:

▶ The paper motivates with the throughput-latency tradeoff, but the proposed
solution is accuracy-latency tradeoff.

▶ Limited to time-related tasks.

▶ Early returning results for some samples may not always be meaningful. e.g.,
during LLM decoding.

Introduction Background Challenges Design Evaluation Conclusion

Takeaways

▶ EE may be promising in cutting the cost of large models serving.

▶ Workload-specific optimization can be very powerful. e.g., vLLM’s design for
beam search.

▶ An idea: combine with pipeline parallelism?

Thank you!

Training and Deployment

Apparate prohibits early exits during initial training, ensuring that ramps are
trained independently. This is because Apparate will adaptively change the active
ramps at runtime.

For initial deployment, Apparate evently space the ramps based on the budget
and GPU memory. To avoid accuracy dips, all ramps begin with thresholds of 0,
i.e., no exiting.

	Introduction
	Background
	Challenges
	Design
	Evaluation
	Conclusion
	Appendix

