Apparate: Rethinking Early Exits to Tame
Latency-Throughput Tensions in ML Serving

Yinwei Dai%*?> Rui Pan'? Anand lyer? Kai Li' Ravi Netravalil

IPrinceton University
2Georgia Institute of Technology

Presenter: Shiwei Zhang

Introduction
°

Introduction

» Machine Learning (ML) inference has become a staple for request handling
in interactive applications such as traffic analytics, chatbots, and web
services

» Existing platforms impose harsh tradeoffs between throughput (cost) and
latency.

» This paper explores early exits (EE) to resolve this tension.

Introduction Background Challenges Design Evaluation Conclusion
[e] @00 00000 0000000000 000000000 [e]e]e}

Background

Evaluation Conclusion

Introduction Background Challenges
0®0

Throuphput-Latency Tradeoff

m resnet50 vggl3 bert-base gpt2-medium
&s00; 7501 100 1

=] 500 A

a 250

§ . ' ' 250 A ' ! ' 50 ' ! 104 ' :

° 25 30 10 15 20 50 100 0 500 1000
',E Latency (ms) Latency (ms) Latency (ms) Latency (ms)

Latency for an input is minimized by scheduling inference as soon as the request
arrives with batch size of 1.

Throughput is maximized by creating large batches using a queuing system which
directly inflates request latencies.

Introduction Background Challenges Design Evaluation Conclusion
ooe oo0ooo. 000000C 000 000

Early-Exit Models

EE inserts exit points (also called ramps) into the model to conditionally
produce results without running some of the layers.

Early-exit |
layers |

For example, an object detection model do not need to run all layers to decide
that there is nothing on an empty video frame.

Exiting decisions are made by comparing the entropy in the predicted result to a
threshold.

Introduction Background Challenges Design Evaluation Conclusion
[e] [e]e]e} @0000 0000000000 000000000 [e]e]e}

Challenges

Introduction Background Challenges Design Evaluation Conclusion
[e] 000 0e000 0000000000 000000000 000

C1: Latency and Resource Overheads

» The ramps take up GPU memory (6.56% for BERT-Base).

» The additional exiting decisions increase latency of “hard” requests (up to
22%).

Introduction Background Challenges Design Evaluation Conclusion
o] 000 00e00 0000000000 000000000 000

C2: Frequent and Costly Adaptation

ﬁ 10 4 L] L 2N 4 L] ° L 2R] LN 2 L 2 1 4 L]
o 841 @ oo ° oo o0 0000
g 65 : ® L] ° : L R N 2 A4 ° b4 ° :)4 °
. - . - = 41 ° < LS oo oo ° o0
The optimal configurations (active E 27202032 3 ¢ coes el3s tie eete s
o 4 ° L 2R] ® L2 N 4 L 4 L 4
. 0 - o ®
ramps and their thresholds) changes T I T T s a0 s 5
Chunk ID
freq uently. (a) BERT-base; Aumazon reviews
8137 . v ¢ TS LT L
g104 X S o P oo .
Strategy \ Workload CV NLP 8 g; oL S oo o
Initial Only 84.5% (74.3%) | 86.8% (73.6%) g ‘21 : +
Uniformly Sampled | 90.3% (64.2%) | 87.7% (69.4%) 8 0l e oecce _ceececccece e ee$
Continual Tuning 98.6% (43.5%) | 98.3% (26.6%) 0 5 10 o 15k o 20 25 30
un|

(b) ResNet50; random corpus video

Challenges
00000

C3: Lack of Accuracy Feedback

In production scenarios, serving optimizations that deliver accuracy reductions of
more than 1-2% are generally considered unacceptable. However, current EE
proposals suffer from accuracy drops up to 23.9%.

Once deployed, EE models do not provide indication of accuracy drops. When an
exit is taken, the corresponding input does not pass throuput the remaining
model layers, and the original model’s prediction is never revealed.

Challenges
ooooe

C4: Incompatibility with batching

When inputs exit at ramps, the batch size for already scheduled tasks shrinks,
leading to resource underutilization for the rest of the execution.

Original model

e
O
= b 3 3o !
< iy a =Y] as s |
5 ol E £ oL EE :L]laol
> © o > © ?; >
< © %] (%] © w5 o |l
S|4 n ™ =]l -0 —
18] I i ~— i l
o 7= _ _ _=____JF=____2= o
| Ramp, | | Ramp, | | Ramps | |Ramp12|
1 sample 2 samples 2 samples Remaining

exits exit exit " samples exit

Introduction Background Challenges Design Evaluation Conclusion
o] 000 00000 0000000000 000000000 000

Design

Design
0e00000000

Key Design

Apparate focuses solely on latency savings by allowing results to exit, with
inputs still running to completion.

» Foregoing true exiting eliminates batch size changes during inference (C4).
» Running to completion grants Apparate with direct and continual feedback
on accuracy (C3).

» This feedback provides the requisite information for continual adaptation of
EE configurations (C1, C2).

Design
00e0000000

System Architecture

[) ™ Requests _| Serving ¢ '\
a & SLOs System [
| — .
® Submit ® EE pceuracys ~= @ Profiling 2 EE
Confid Config
onfiaence
Model Model] I

Tuning ~ Accuracy Loss

.I]_I]—H. ﬁﬂﬁ» ® Threshold 42 Triggered by
o

® Ramp (:) Every X

Adjustment Requests

Latencies

@@ Model Prep
& Analysis Controller
Apparate

Introduction Background Challenges Design Evaluation Conclusion
o] 000 00000 0008000000 000000000 000

Ramp Injection

Apparate considers layers that are cut vertices as EE candidates.

Input Input
r--- it | [B ——
- I I
: |We|ght Layer| I | Conv Layer | | Multi-Head :
| ¥ | [Attention |
| : . [conv Layer | : ¥ [
| | S ' [Add & Norm]+,
I [weight Layer | : ® | Pooling | : —
| * (7] |
| (= < | |Feed Forward| [,
e e o | |
& £ [Add & Norm J|
e s
\

v
(a) ResNet (b) VGG (c) BERT

Introduction Background Challenges Design Evaluation Conclusion
o] 000 00000 0000800000 000000000 000

Ramp Architectures

Apparate chooses many lightweight ramps instead of fewer expensive ramps.

[Many Ramps [X] Some [l Fewer

()
© 30
Sw
C £
9= 20
>
.
C
© 104
o ®©
o -
s 0

Design
0000080000

Threshold Tuning

Triggering: Threshold tuning is triggered any time a window's accuracy falls
below the user-specified accuracy constraint.

Evaluation: Apparate identifies the earliest ramp whose top prediction now has
an error rate below its threshold and compare its result with the original model
output.

Greedy Search: Based on the fact that higher thresholds result in monotonic
decreases in accuracy and latency, Apparate designs a hill climbing algorithm to
decide the thresholds for active ramps.

Introduction Background

Design Evaluation Conclusion
0000008000

Greedy Search

Starting with thresholds of 0 for all active ramps, Apparate choose a direction
with largest additional latency saving per unit of additional accuracy loss.
Apparate follows a multiplicative increase, multiplicative decrease policy on
step size to balance search speed and granularity.

Ramp 5 Threshold

00 05 01 A5 02 25 03 3% 04 A4S
Ramp 9 Threshold

Design
0000000800

Ramp Adjustment

Apparate periodically adjusts the active ramps, which ultimately provides bounds
on potential latency savings.

Unlike threshold tuning which runs reactively, ramp adjustment runs periodically.
This is because threshold directly affects accuracy and must react promptly, while
ramp adjustment only affects latency and is pure optimization. In addition, ramp
adjustment requires deployments to evaluate the impact of new ramps.

Design
0000000080

Removing Active Ramps

Apparate defines the utility of ramp R = savings — overheads, where savings
is the sum of raw latency that exiting inputs avoided by using R, and overheads
is the sum of raw latency that R added to inputs that did not exit.

If any negative utility values exist, Apparate applies a fast threshold tuning round
to see if ramp utilities become positive without harming overall latency savings.
If not, Apparate deactivates all negative-utility ramps.

Challenges Design Evaluation Conclusion

Introduction Background
000 000000000 e 0O000000C

Adding New Ramps

Intuition: later ramps exhibit higher exit rates than earlier ones.

The upperbound exit rate is calculated as the sum of profiled exit rates for the
following deactivated ramp and any earlier deactivations.

Higher Exit Rate

——
Higher Latency Savings
5% 10%

L 1 1 e 1 1 °

o 1 2 3 4 5 6 7 8 9 10 11

Profiled Exit Rate

The ramp with the highest utility score is selected for trail.

Introduction Background Challenges Design Evaluation Conclusion
o] 000 00000 0000000000 @®00000000 000

Evaluation

Evaluation
0®0000000

Setup

» Models: 10 models across 4 families, covering CV and NLP.

» Workloads: CV workloads comprise real-time object classification on 8
one-hour videos. NLP workloads use Amazon product reviews and IMDB
movie reviews.

» Parameters: SLO is 2x of each model's inference time with batch size 1.
Accuracy constraint is 1%. Ramp overhead budget is 2% impact on
worst-case latency.

» Hardware: Single machine with one NVIDIA A6000 and 32-core AMD CPU.

» Platforms: TensorFlow-Serving and Clockwork (using PyTorch).

Introduction Background Challenges Design Evaluation Conclusion
o] 000 00000 0000000000 00e000000 000

Comparison with Baselines

[Apparate M Optimal

1inan

ResNet18 ResNet50ResNetl01 VGGll VGG13 VGG16

N A O @
o o o

o

Med. Latency Wins
vs. Vanilla (%)

o

[Apparate M Vanilla

al

ResNet18 ResNet50ResNetl01 VGG1ll VGG13 VGGl6

w
o

N
o

-
o

P95 Latency (ms)

o

Introduction Background Challenges
000 00000

Design
0000000000

Comparison with Existing EE Strategies

Existing EE approaches yield unacceptable accuracy drops while having longer

tail latencies as compared to Apparate.

Evaluation
000@00000

Avg Acc Median Wins | P95 Wins

Apparate (ResNet50) 99.0-99.2% 40.9-88.6% -1.6-0.0%
BranchyNet 85.8-99.8% -11.0-88.3% -11.0%
BranchyNet+ 76.1-99.9% -11.0-88.3% -11.0%
BranchyNet-opt 99.0-99.7% -11.0-74.5% -11.0%

Apparate (BERT-base) | 99.1-99.3% 9.1-24.1% 0.7-1.8%

DeeBERT 91.7-97.1% 13.2-36.1% -1.3-6.4%

DeeBERT+ 82.2-90.3% 31.7-36.1% 5.9-6.4%

DeeBERT-opt 99.0% 9.8-36.1% -1.4-6.4%

Conclusion
000

Introduction Background Challenges
[e]e]e} 00000

Design Evaluation
0000000000 0000®0000

Microbenchmarks - Parameter Sensitivity

[<2]
o
L

/'/‘

Median Latency
Savings (%)
N B
o o

1 2 5
Accuracy Target (%)
(a) ResNet50

[«2]
o
L

Savings (%)
N B
o o

o———/

1 2 5
Accuracy Target (%)
(b) GPT2

Median Latency

Ramp Budget

ResNet50 | GPT2

2%

48.9% 18.5%

5%

49.6% 22.2%

10%

50.4% 24.9%

Conclusion
000

Introduction Evaluation Conclusion

0O0000e000 000

Microbenchmarks - Ramp Architectures

When using DeeBERT's more expensive ramps, Apparate performs 4% worse
since the costlier ramps constrain Apparate's runtime adaptation, i.e., fewer
active ramps at a time.

Introduction Background Challenges Design Evaluation Conclusion
o] 000 00000 0000000000 000000800 000

Microbenchmarks - Impact of Serving Platform

The (median, p95) latency over vanilla models are similar on the two platforms.

System\ Workload | ResNet50 GPT2
Clockwork (20.2, 37.8) | (689.2,779.4)
TF-Serve (24.5,37.8) | (709.3,793.1)

Introduction Background Challenges Design Evaluation Conclusion
o] 000 00000 0000000000 000000080 000

Microbenchmarks - Profiling Apparate

Ramp adjustment rounds take 0.5ms. Additional CPU-GPU communication take
0.5ms, where 0.4ms comes from PCle latencies.

4
10 [Greedy Search (ours)

B Grid Search

103

102

Runtime (ms)

10!

Num Ramps

Introduction Background Challenges Design Evaluation Conclusion
o] 000 00000 0000000000 00000000 000

Microbenchmarks - Ablation Study

Disabling ramp adjustment results in 20.8-33.4% lower median latency wins.

Introduction Background Challenges Design Evaluation Conclusion
o] 000 00000 0000000000 000000000 @00

Conclusion

Conclusion
oeo

Conclusion

Strength:
» Coherent design around a novel idea (running EE models to completion).
» Automatic and non-intrusive system (no modification on model definition
and serving platform).
Limitation:

» The paper motivates with the throughput-latency tradeoff, but the proposed
solution is accuracy-latency tradeoff.

» Limited to time-related tasks.

» Early returning results for some samples may not always be meaningful. e.g.,
during LLM decoding.

Introduction Background Challenges Desig Evaluation Conclusion
000 00000 0000000000 ooe

Takeaways

» EE may be promising in cutting the cost of large models serving.

» Workload-specific optimization can be very powerful. e.g., vLLM's design for
beam search.

» An idea: combine with pipeline parallelism?

Thank you!

oce

Training and Deployment

Apparate prohibits early exits during initial training, ensuring that ramps are
trained independently. This is because Apparate will adaptively change the active
ramps at runtime.

For initial deployment, Apparate evently space the ramps based on the budget
and GPU memory. To avoid accuracy dips, all ramps begin with thresholds of 0,
i.e., no exiting.

	Introduction
	Background
	Challenges
	Design
	Evaluation
	Conclusion
	Appendix

